Naval Research Laboratory

Washington, DC 20375-5320

Lossless Data Compression
of Packet Data Streams

Junno CHol
Command Control Computers and Intelligence Branch

Space Systems Development Department

MrrcHELL R. GRUNES

Allied Signal Technical Services
Camp Springs, MD

February 14, 1996

19960228 105

Approved for public release; distribution unlimited.

NRL/MR/8140.2--96-7818

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing dats sources,
gathering and maintsining the data needed, snd leting and reviewing the ion of infol ion. Send regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations end Reports, 1216 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, snd to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20603.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 14, 1996

4. TITLE AND SUBTITLE

Lossless Data Compression of Packet Data Streams

6. AUTHOR(S)

Junho Choi, Mitchell R. Grunes*

5. FUNDING NUMBERS

PE - 81-M040-X6

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/8140.2-96-7818

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

SPARWAR

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

*Allied Signal Technical Services, 5801 Allentown Rd Suite 400, Camp Springs MD 29746

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

with a good compression factor, except on encrypted data.

This report continues the work published in the prior interim report, NRL/MR/8140.2-95-7742. It presents the interim
development of a compression and de-compression system, including tests of effectiveness on selected digitized packet streams.
Blocks of packets are grouped by packet type, and are broken up into separate compression streams on bit field boundaries. 18
lossless compression algorithms are examined for effectiveness. These algorithms are able to compress most of the data available

14. SUBJECT TERMS

Arithmetic coding LZ77 LZRW3A Radix coding
Data compression LZ78 Packet Rice coding
Lossless compression LZW PPMC Run length encoding

15. NUMBER OF PAGES
51

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANS! Std 239-18

298-102

TABLE OF CONTENTS

1 INTRODUCTION ..ottt ieierecnesosnsaansnesnssssssosasesecosneecncss 1
1.1 Backgroundooonveemenneeeannne s siaa e 1
1.2 ODJECEIVES « o oo oovvveaaneeeennnnasennessonnnneesnnnnreseerenns 2
1.3 System Design Considerationsccooeneeerernrnreeceessens 2
2. DATA STATISTICS WHICH FAVOR COMPRESSIONoneanecnvenneenen 4
3. LOSSLESS COMPRESSION ALGORITHMScccuvennarenrereneecees 5
4. ADAPTIVE DIFFERENCING AND REMAPPINGcccoveeneccnnenrncns 7
5. LOSSY COMPRESSION ALGORITHMccvvinrnrencnncnnccrnenecees 8
6. LOSSLESS COMPRESSION RESULTS AND ANALYSIScccvveveveenes 9
6.1 Speed and COMPIEXILYcovtvnrrannrronnrannecrnneraanneenns 9
6.2 Compression Factors vs Generic Byte Stream COMPresSSOrS . ccvooeoooranne 9
6.3 Choice of Optimal Algorithmcieiirrenenrenerceenenenes 12
7. | LOSSY COMPRESSION RESULTS AND ANALYSIScccceeeeceeenenne 13

8. SUGGESTIONS FOR THE DEVELOPMENT OF FUTURE PACKET FORMATS .. 13

9. PROPOSAL FOR FUTURE DEVELOPMENTcoceernrvncernannces 14
10. CONCLUSION . .ot iiieerceenannasasasssasnssssaonensesnsnnsoceeess 16
11. REFERENCES . ..ot iivetretnennnanasssasanssssnssasascssessnressses 16
A APPENDIX A: CONFIGURATION MANAGEMENTccvvevnrennannnnes 17
AL INTRODUCTION . . vt vevevnvrnnransonesenssanseentsonsonnesssccses 17
P T (. S L R R R E R R R R R 17
Al2 ThiSDOCUMENt .. vovvvernerersasoerassasostosaosaasesesensneveteses 17
AL3 COMPULETS .. .vvvvveooonnneesoanesssssannnssssnenreressennseensress 17
Al.4 ADDreviationsoceveeeoaoacansanasosscossaassescseurnsres 18
A2. REFERENCE DOCUMENTSconitrnetrnesastnsnnoasecencrennncns 19
Al. ORGANIZATIONicvivninerreoonnonssascnsesssnnaseoecconnsaroses 19
A4. CONFIGURATION MANAGEMENT PHASING AND MILESTONES 20

ii

AS.

A6.

A6.1
A6.2
A6.3

AT7.

A7.1
A7.2
A7.3
A74
A7.5
A7.6

AS.
A9.
A10.

All.

DATAMANAGEMENTttt ittt tasnesesanannassscscnns 21

CONFIGURATION IDENTIFICATION i iiiiiiiiiiiiiiinanenncnans 22
Test Data Set Identificationc.t e nnaeeranaanens 22
Software Identificationccoeitini ittt enasstosesnsenaons 22
Descriptions of Filesottt 23
INTERFACE MANAGEMENTttt iittnnneenaoanssnanenssans 23
General INformationc.cccuei ittt eeertenassoasssossacsssaacss 34
Compilation of Softwareottt 34
Transport of Softwareo .eui it 35
Running the Software iiiiiiiiiiiiiiiiiiiieanans 37
Testing and Verificationo it 39
Sample OUEPUL . ..o vttt ettt it 39
CONFIGURATION CONTROLttt ssetnannsnaanns 48
CONFIGURATION STATUS ACCOUNTINGt iiiiticnennennnns 48
CONFIGURATION AUDITS ...t eiitit i itinannnansesansoensannanns 48
SUBCONTRACTOR/VENDOR CONTROLttt iiiieneennnnennns 48

iv

LOSSLESS DATA COMPRESSION OF PACKET DATA STREAMS

1. Introduction
1.1 Background

This report continues the work published in the prior interim report, reference [3]. It presents the current
development of a compression and de-compression prototype system and tests of effectiveness on the
selected digitized packet streams. It is also an expanded version of a previously published conference
paper [4]. It is augmented by the description of data formats contained in [2].

We have created a proof of feasibility prototype system for compressing packet data streams. The end
goal is to reduce costs. Real world constraints include transmission in the presence of error, tradeoffs
between the costs of compression and the costs of transmission and storage, and imperfect knowledge of
the data streams to be transmitted. The overall method is to bring together packets of similar type, split
the data into bit fields, and test a large number of compression algorithms. The best algorithm is chosen
for each field.

Results are very promising, frequently offering compression factors substantially higher than those
obtained with generic byte stream compressors, such as Unix Compress and HA 0.98. Dramatic
improvements over the 1994 fiscal year (FY 94) have occurred as result of two major factors: more and
improved compression algorithms, and better knowledge of the data formats.

The creation of complex technical systems in the real world environment often involves a major
administrative effort to integrate the equipment and data created by diverse organizations. Each
organization typically brings its own interests and prior experience, builds its own instruments, and defines
its own data stream content.

An administratively efficient solution to data stream integration is to organize the data into "packets”
containing a common set of basic bit fields, and one or more variable format fields. Each organization
is free to define the structure and content of the variable format fields for each of its packet types. The
common elements allow hardware and software to deal with all types of data in a similar manner, at the

source and at the destination.

Manuscript approved January 5, 1996.

A simple example might include:

Field Bits Content

Organization defining this packet particular type.

Packet type within that organization.

Telemetry flags indicating overall equipment status.
8 Time tag for packet generation.

W —
N W b

|
%
2
z
Z
%
é

Subdivided differently for each packet type

One packet structure might define the variable format field to contain four 8 bit values, all part of the
same data sequence. Another packet structure might contain three fields, with 9, 11 and 12 bits, in distinct
data sequences.

The software is currently configured to be used with a set of somewhat more complex packet formats
outlined in [2].

The administrative efficiency is obtained at the cost of some increase in data bandwidth. In addition, some
packet telemetry fields change rather slowly. Thus, a data compression system which has been customized
to the specific packet structures has herein been found to attain lossless compression factors that are higher
than those obtained in typical consumer applications.

1.2 Objectives

The main objective of this study has been to develop a compression algorithm that can generate substantial
cost savings and bandwidth reduction. The work has included the development of a proof of feasibility
prototype compression and de-compression system.

Data transmission and storage in modern remote sensing systems represent major components of the total
cost. In particular, data volume affects bandwidth, ransmit power, the cost and payload weight of power
systems, the cost of transmission lines and channels, and storage requirements. These concerns apply both
on-board and on the ground.

For some applications inexpensive off-the-shelf compressors provide adequate results. This study is
directed towards those applications where the high costs of transmission and storage justify a more
elaborate system. This must always be balanced against the cost and power requirements of the data
compression system itself.

1.3 System Design Considerations

Our present system can be customized for compression and de-compression in multiple applications by
modifying those portions and tables which define and manipulate packet types, or which input or output
data. Flexibility is important, since one may have imperfect knowledge about the format and statistics of
the input data stream at the design stage of the communications system, when many design elements are
still in flux.

Compressed data is more context-dependent than uncompressed data, so error correction coding (ECC)
is very strongly recommended for channels that transmit compressed data. It is assumed that one uses
external ECC hardware or software that is off-the-shelf or embedded in the data channel. This may mean
that the compression system will not be able to determine when and where the ECC has lost badly
transmitted bits. Therefore some overhead has been included in the compressed data stream to detect
errors and to re-sync the data. A block of packets can be lost when an uncorrectable error occurs, but the
rest of the data stream can still be recovered. This capability is extremely important.

The current compression software includes the error detection overhead, but the de-compression software
is not yet capable of using it to recover from errors.

Other complications of the real-world exist. There is a great deal of externally produced frecly available
compression source code, although one must still deal with patents (see [5]). Indeed, if one is to believe
[5], the highest compression factor generic byte stream COmMpressors are freely available. The present
system includes two such algorithms. One (LZRW3A) was of simple structure and was designed in such
a way as to be externally callable; it was integrated with little difficulty. The other (HA 0.98) was a very
complex stand-alone package; it presented greater difficulties.

A significant effort is required to embed externally produced stand-alone software inside any transmission
system. In an operational environment one must ensure that no component can accidentally or deliberately
halt or do harm to associated computers, networks and transmission channels. This involves a great deal
of work, in terms of comprehending, re-writing, and simplifying source code. For our system we modified
the interface structure, added some bounds checking for indices and pointers, and checked for other
potential problems. Finally, in one of the cases (HA 0.98) it was considered prudent to check the de-
compressed result before choosing the algorithm as best.

We impose the formal requirement for the lossless algorithm that the compression/de-compression process
will cause no data to be lost or re-ordered, even if it does not match the assumed format. That is, the
input stream of the compression process must be bit-for-bit identical to the output stream of the de-
compression process. This is necessary to simplify debugging in complex environments where multiple
organizations are involved.

The current version can also be configured to utilize a simple lossy compression algorithm which could
further improve compression factors by omitting or reducing the precision of some fields (packet order
is still preserved). It is expected that the decision to employ lossy compression would involve a careful
cost-benefit analysis by each data user organization and project. It is recommended that the decision to
employ lossy compression not be imposed on the data users. All of the results cited in this report are for
lossless compression, unless otherwise specified.

Prior to compression, packets are classified into types. The less common types are classified together into
one generic type, and packets not matching an expected format are classified into a byte stream type. The
generic type breaks out the common format fields, but views the variable format fields as a sequence of
bytes. The byte stream packet type views the entire packet as a sequence of bytes. Types with a small
number of packets are re-classified as generic, and packets surrounded by byte stream packets are
themselves re-classified as byte stream packets.

The runs of each packet type may not be very long, so it would involve too much bit overhead to start
a new run of compression processing each time the packet type changes. Therefore, the data is divided
into 512 packet blocks, packets are classified by type (as specified above), and the sequence of packet
types is itself compressed and transmitted. All of the packets of each given packet type from a given

block are assembled into a separate compression sub-stream. On de-compression, the packet type
sequence is used to re-assemble the packets back into the original order.

This blocking introduces a delay of at least 512 packets before information can be transmitted, a serious
problem on temporarily quiescent data streams. To solve that problem, the block would be terminated
after less than 512 packets, if the packet buffer does not fill quickly enough (in the operational version).

Each of the bit fields for each sub-stream is compressed as an independent compression sequence. In the
current version, each bit field sequence is tested against 18 compression algorithms, and the best is chosen.

The output compressed data packet output from each block of input packets includes:

Sync code

Number of original packets (usually 512)

Compression algorithm # for type sequence

Compressed packet type sequence

For each packet type:

For each bit field:

Compression algorithm #
Compressed data sequence

Check Sum

In a future version the output format should also include a configuration version number. This will allow
multiple configurations to be in simultaneous use by different groups, or for different purposes. For
example, some configurations might allow lossy compression (and attendant loss of precision) on some
fields.

On reception, an incorrect sync code or check sum indicates that a compressed packet has been transmitted
incorrectly. The intended mode of operation for the proposed system is that if either is wrong (or the error
correction system does in fact inform the compression system of the location of an error), or another error
occurs during de-compression, the block is discarded, and the receiver scans for the next sync code. Good
blocks are de-compressed, and the packets are placed back into the original order. In the current
prototype, errors merely abort the program.

2. Data Statistics Which Favor Compression

Good compression results can have significant economic value and can significantly impact professional
stature. As, in any field, some claims tend to show a given system in the best possible light. For
example, some forms of compression have been labelled "lossless” which do produce de-compressed data
streams which are not bit-for-bit identical to the original streams. In most cases terms like ‘

no observable loss

no perceivable loss

visually lossless
have been used to indicate that such a special definition is being employed. Our lossless compression
algorithm is genuinely bit-for-bit lossless.

The system described herein is not capable of losslessly compressing all possible data sets. That is
impossible, as shown by the well known "counting argument”: There are 2" possible data sets containing
N bits. 2V is monotonically increasing. Therefore it is impossible to represent all data sets by shorter
ones. For example, one cannot uniquely represent all four possible 2-bit data sets by the two possible 1-

bit data sets. In order to compress any data set it is necessary (when all the overhead is taken into
account) to represent some data sets using "compressed” data sets which are slightly larger than the
originals.

Thus, a statement that some lossless compression system can COmpress all data sets by a given factor (or
at all) would actually be an assumption that all data sets which actually occur will follow statistics
favorable to that compression system--an optimistic assumption.

Lossless data compression functions by representing more probable data sets (those with favorable
statistics) in fewer bits than the corresponding original data sets, at the expense of representing less
probable data sets in more bits. If one knows enough about the format and statistics of a class of non-
random data sets, one can do so in such a way that the average length of the "compressed” data sets will
be less than the average length of the original data sets.

For additional information on this topic, consult [5].

The compression system described is only intended to compress data of the packet structures that it is
configured to compress, on the assumption that some fields have statistics which are favorable for
compression, namely:

The values or their first differences vary smoothly or slowly.
or Some values or their first differences occur more often than others.
or Some short sequences of values or their first differences occur more often than others.
or The values or their first differences do not fill the full dynamic range allowed by the number of bits.

Data whose statistics are approximately random (such as encrypted data, or previously compressed data
streams) can generally not be losslessly compressed by this or any system.

Since no lossless compression factor can be assured with absolute certainty, operational systems
transmitting on fixed data rate channels must be able to continue after some data is lost due to an
insufficient compression factor. If an adequate safety margin is employed, such an occurrence will be
rare.

3. Lossless Compression Algorithms

No radically new compression algorithms have been developed for this study, but some improvements
have been made to published algorithms, and some published algorithms have been combined into hybrids.
Our full algorithm can be considered to be a hybrid of all of the discussed algorithms.

Each algorithm is tried on each field, of each packet type sub-stream, within each block of packets.
Current lossless algorithms include:

1. Constant Coding--If all of the values are of one constant value, that value is sent only once, and no
other algorithms need be tested.

2. Constant Bit Removal--If only some of the bits are constant, a mask is sent specifying which bits are
constant, and those bits are sent only once. Constant bit removal is applied before all of the
remaining algorithms. For method 2, the remaining bits are transmitted unchanged.

4.

5.

6.

7.

8.

9.

Run Length Encoding--The sequence of values is replaced by a set of ordered pairs, containing the
value, and the number of times it is consecutively repeated (less one). If the value changes
infrequently, this will require fewer bits than the original.

As an improvement to the algorithm, the number of bits needed to code the largest repeat count (less
one) is determined and before transmitting the run-length pairs. That value and the number of values
remaining are used to determine how many bits are used to send each run length code.

Rice Coding--This algorithm, based on [7] and [8], allows for very rapid adaptivity, because it
transmits one adaptive parameter--the number of least significant bits of the remapped differences that
may optimally be transmitted unchanged--for each Rice block (currently 32 values; could be varied).
The most significant bits are re-mapped and transmitted as a terminated unary code (0 as 1, 1 as 01,
2 as 001..., with no termination required for the largest detected value). The differencing and
remapping algorithms are discussed in the next section.

A fairly large amount of work went into making improvements to this algorithm. For example, two
special adaptive parameter values handle the low entropy cases: one indicates that all of the
differences are zero, and the other adds one coding value to represent four zero difference values.
The adaptive codes are themselves Rice coded within each block of packets.

LZ77--This was based on [9]. It is a "dictionary search" algorithm intended to be used with data
having repeated strings of values. A window of prior values is searched for the longest string of
values matching the current and future values. The backwards distance of the best match (or a flag
value for new values not matching prior values) is transmitted, as is the number of matching values
in the string. Flag values are prefixed before transmittal of values not previously sent.

Improvements were made to the algorithm: an elaborate adaptive technique is used to determine the
adaptive window size, based on prior matches, with a periodically increased size. A similar adaptive
technique is used to determine the maximum string length. These sizes are rounded up to fit into an
integral number of bits, and each value is transmitted in the minimum number of bits. Linked lists
are used to speed up processing.

LZ77 Applied to Differences--The above algorithm is applied to the remapped differences.

LZRW3A--This LZW family algorithm, based on [11], was implemented in a software package that
was obtained freely. The hash table depth was increased from 3 to 6. The software structure was
quite simple, and no problems were encountered embedding it into our system. It was designed to
deal with byte streams, so the field is copied into a byte stream: fields with 1-8 bits/value (after
constant bit removal) are copied to one byte/value; values with 2-16 bits/value are copied to two
bytes/value, etc. :

LZRW3A Applied to Differences--The above algorithm is applied to the remapped differences.

1.778--Another LZW dictionary search algorithm, based on [10], searches for groups of past strings.
The same improvements in adaptive window sizing and the use of linked lists are applied as for

LZ77.

10. 1LZ78 Applied to Differences--The above algorithm is applied to the remapped differences.

11. HA 0.98--This is file archiver that was rated by [S] as providing the highest compression factors on
generic data sets, using an "improved" PPMC (Prediction by Partial Matching-C) algorithm with 4th
order Markov modeling. The modeling is used to form probability weights for arithmetic coding.
As with LZRW3A, the data is placed into a byte stream. HA 0.98 actually includes two somewhat
different algorithms--"ASC" and "HSC". Both are tested.

The HA 0.98 software was originally designed as a very complex stand-alone program to perform
actions in response to command strings, and to interact with the operating system via elaborate
system calls. Safely embedding this complex stand-alone program into our application consumed
substantial time and effort, and the software runs somewhat slowly, but it does yield excellent
compression factors on many fields, in many cases.

12. HA 0.98 Applied to Differences--The above algorithm is applied to the remapped differences.

13. Radix Coding--The sequence of reduced values are interpreted as the base M+1 representation of a
single large number, where M is the maximum possible value. The large number is then transmitted.

As improvements, the minimum value is found and subtracted from all data values, and M is set to
the actual maximum residual. The large value accumulation is flushed when the maximum
accumulation becomes too large for efficient calculation (currently, when it exceeds 2°%).

We tried to use mixed radix (M) coding in hybrid with other algorithms (e.g., to code a fractional
number of bits in a modified Rice algorithm), but those hybrids were not found to represent
significant improvements and were dropped.

14. Radix Coding Applied to Differences--The above algorithm is applied to the remapped differences.

15. Arithmetic Coding--This algorithm is based on [1]. It is based on a simple zero-order incrementally
adaptive probability model.

16. Arithmetic Coding Applied to Differences--The above algorithm is applied to the remapped
differences.

17. Run Length Encoding + Rice--The run length pairs are derived as for algorithm 3. The values are
then differenced, remapped and Rice coded. Remapping is modified to take advantage of the fact

that values are never repeated. The run lengths are also Rice coded.

Our lossless algorithm is a hybrid of all of the above algorithms. As discussed earlier, packets are
grouped together by type, the data is broken up into bit fields, and the algorithm is chosen for each field
that produces the highest compression factor. In the event that no algorithm leads to an improvement; the
field is sent uncompressed. A code indicating which algorithm was used for each field precedes the rest

of the compressed stream.
4. Adaptive Differencing and Remapping

Many of the compression algorithms that we use rely on differencing of the values from their predicted
values to reduce the typical size of the numbers to be coded. A variety of methods is tried.

In the simplest methods, the prediction for any value is simply the prior value. The differences of the
current value from its predicted value are then remapped into a sequence of non-negative numbers. The

optimal way to perform this remapping depends on the proper interpretation of the bit field. All of the
following interpretations are tested, to minimize the sum of the remapped values:

(A) No remapping (or differencing).

(B) The values are the least significant portion of larger values; positive differences more likely.
(C) Same as B, negative differences more likely.

(D) The values are unsigned; positive differences more likely.

(E) Same as D, negative differences more likely.

(F) The values are signed, in two’s complement notation; positive differences more likely.

(G) Same as F, negative differences more likely.

For example, the sequence
5,54,5,3,5,25...

would produce the difference sequence
0,-1,1,-2,2,-33...

which would be remapped using assumption (C) as
0,1,23,4,56...

The greatest common factor is removed at two points in the process, and minimum values are found and
subtracted. If no negative or no positive differences occur and/or there is a minimum absolute difference,
those facts are also taken advantage of. The largest values are found at two points in the algorithm, and
are used to determine the number of bits needed to transmit the remapped values.

Finally, a least squares fit is tried in which the current difference is predicted to be
alpha+beta*(previous difference)

The fit is only used when it improves matters. It often does not, because residuals have fewer removable

systematic patterns than the differences themselves, and because of overhead.

The current algorithm treats the data as one dimensional sequences. A two dimensional predictor would
be desirable if this compression system were applied to images.

5. Lossy Compression Algorithm

In the event that the software is configured to apply lossy compression, the software currently employs
a very simple algorithm, which reduces the precision of the values sent.

The configuration for each field within each packet type includes a value called iLoss. If iLoss is zero
(or is larger than the largest possible value), the field is not sent, and will be de-compressed as zero. If
iLoss is one, the field is sent using lossless compression. If iLoss is greater than one, the field values are
divided by iLoss and rounded down. It is then sent using the hybrid lossless compression algorithm
discussed in the prior sections. After the field is de-compressed, it is multiplied by iLoss, then added to
iLoss/2 (rounded down). That means that the maximum possible de-compression error is iLoss/2 (rounded
down).

This form of lossy compression is in some respects sub-optimal. It was chosen at the current time for two
reasons:

A. It is expected that those data users considering the use of lossy compression will do so with
some trepidation. They may only consider methods whose affects they can easily and
completely understand.

B. Those data users should have the option of selectively transmitting fields losslessly, with reduced
precision, or not at all. As was discussed earlier, several configurations might be in
simultaneous use, by different data users, or for different purposes.

6. Lossless Compression Results and Analysis
There are several criteria by which we may evaluate lossless compression.
6.1 Speed and complexity

The advantages of testing multiple compression and differencing algorithms comes at a considerable cost
in speed and complexity. In real-world applications, one must limit the algorithm search, based on the
test data sets.

The preliminary prototype is probably slow enough that this is insufficient. Work up to this point has
been directed towards a proof of feasibility--that is to produce a sufficient compression factor to justify
economic viability. Execution speed was considered a low priority.

The prototype which is closer to an operational version will have to be designed to execute more quickly.
That issue is addressed in section 8.

6.2 Compression Factors vs Generic Byte Stream Compressors

Table 1 shows the compression factors (C.F.) obtained in FY 94 and FY 95 on thirteen different packet
data streams. They are also compared to those obtained by Unix compress and HA 0.98.

It must be noted that very limited information was provided to us on the packet format and statistics
during FY 94. In some instances, incorrect formats had to be assumed. Hence, results during FY 94 were
not always as good as might have been hoped. During FY 95 additional information became available,
and significant additions and improvements were also made to our hybrid algorithm. Therefore our results
are now much more encouraging.

As discussed in section 2, lossless compression factors vary with the input data, and cannot be relied upon
completely. Data must be buffered to smooth out compression factor variation. In the worst case, the
system must be able to continue after a data loss due to inadequate compression. The fact that no
compression system can compress random data is illustrated in the results from Tape BB.

Tape D was of an unexpected format, a type of text with a great deal padding. The best our system could
do was to apply HA 0.98 to each block of packets. It did slightly worse than Unix compress, probably
because Unix compress was applied to the data set as a whole, rather than to 512 packet blocks, as was
done for our system and for HA 0.98 alone. The compression factors achieved for Tape D were quite

good, in any event.

No importance is attached to the results for Tape D or Tape BB, since data of these format is not expected
to be compressed by our software. In every other case our system outperformed both of the generic byte
stream compressors. Furthermore, in every case other than Tape BB we achieved a lossless compression
factor of at least 3.14 (in some cases substantially higher)--a very promising result which indicates that
our compression algorithm has the potential to substantially reduce transmission and archive costs.

The results presented here suggest that, with some buffering, compression factors of at least 3 can be
safely assured for all of the types of data tested in this study, except for the encrypted data set.

mN.m NQ.N mN...W —U\C CQOMN—. ‘MOu w_ ﬁﬁ_ﬂ JNE.-O*
GlC G8'} 08¢ p/u 0005 pajoadxa jo Ajjeuibuo JoN |
002 €6°} TA p/u| 000S.€
122 rAM! Gh'e p/u 0005 pajoadxa jo Ajjeuibuo JoN H
€1'e G8'} A 862 | 00052l .0U S| INg e}
v0'C 9Lt AN vbe 000S pajoadxa jo Ajjeuibuio JoN 3}
€26l 826| €26t 69, 000S| Papped :lewio} pajoadxaufn a
29¢ L} 82'¢ 28'c 00261} ~ewo)
8t'c 19} GL'E V.12 000S ejep pajoadxa jo Ajison 0
8t'¢ 89°I 61°€ Gl'2!| 000ScCH JeuLIO)
6v°¢C 19°} 12°€ 882 0005 ejep pajoadxa jo Ajisop g
T 96'} rAN Ge't 09ibt sadf}
A v0'2 €LY (rAl! 000G | 19%oed JualaIp JO suni yoys v
SSal 4°0 40 sjo)ydoed
86°0 | -dwo) G6 ¥6 jo 19S
VH xiun | |eosid| |eosly # uonduosaq | eled

s10joe4 uoissaidwo) ssa|sso | ajqel

10

"posu ou SBM I} S8

“2T8M]JOS JY} JO SUOISIAA P[0 3y} YINOIY) UNI JOU 3I9M ISIAY], "I[qe[IBAB IpBll Aua0a1 Auo 219M S19S BIBP AWOS "dUO0P JION ‘pfu

mmm. mh.c mmm. “v\f_ wN Fm .WWQ.—QEOO Oﬁ sn .—Ow

666" rAN() 666" 666" 000S| aimssodw) -eyep paidAiouz | g9

vo'e WL ys'e 0g'E 182 ‘Jewo} payoadx3 | vv

wN.N Qm.—. NM..V U\C QOOmN—. "MOU m_ u—.—D .“—NE.-O_.

00'€ 002 G8'Y p/u 000S pajoadxa jo Ajjeuibuio JoN n

Nm.N MN.F QC.V ﬁ\—._ QQQWN—. *MOu m_ ﬂ_..-D JﬂE.—Oh

992 oLt 6v'v p/u 000S pajoadxa jo Ajjeuibuo JoN 1

NQ.N Qw.—. mw.ﬂ —u\: OQQMN—. *MOU w_ u.—.-ﬂ J.QE.-O_.

68°C v6°'L €9t p/u 0005 paoadxa jo Ajjeuibuio JoN |

MN.N OQ.F mm.ﬂ v\c QOQWN—. *MOu m_ w—.—ﬂ JGE.—O&

Wit 8L} AN p/u 000S pajoadxa jo Ajjeuibuio JoN r

ssal 40 ‘40| sieoed

8670 | -dwo) G6 ¥6 Jo 19S

VH| Xiun Ad Ad # uonduosaqg | elen

11

6.3 Choice of Optimal Algorithm

In our tests, algorithms 6 (LZ77 Applied to Differences), 7 (LZRW3A) and 8 (LZRW3A Applied to
Differences) were never or almost never picked as best, but the rest were at least occasionally picked.
The most commonly picked algorithms are 1 (Constant Coding), 4 (Rice Coding), 11 (HA 0.98), 12 (HA
0.98 Applied to Differences), 13 (Radix Coding), 15 (Arithmetic Coding) and 16 (Arithmetic Coding
Applied to Differences).

It was not always easy to predict which algorithm would perform best, based on the known data contents.
This demonstrates the desirability of testing multiple algorithms. However, most fields generally did best
with one or two algorithms.

As an example, Table 2 shows the results from a 14 bit field, from Tape AA, for 6 blocks. The selected
algorithm is underlined).

Table 2 Compression factors for a field in which values tend to repeat

Algorithm # H

11 12 13 14

BE

n/a 1.99 2.72 2.70 2.29 2.28
n/a 199 2.78 2.76 217 2.16
n/a 1.74 2.88 201 196 194
n/a 1.74 2.89 2.18 1.96 197
n/a n/a

ws | om | o | o
nja

n/a n/a n/a n/a n/a

(n/a means could not be applied, or was worse than original):

The first 5 intervals had 512 input packets, the last had 281. In the last two intervals, the field was too
noisy for any compression.

The variation in the algorithm 2 compression factor indicates that the number of constant bits varied from
interval to interval. Some methods involving first differencing performed well, indicating it is partially
valid to model the values as a smooth curve. However, some dictionary search methods also performed
well, indicating that the data has a tendency to repeat itself. Where compression was possible, method
11 (HA 0.98) performed best.

Table 3 shows the results for a 4 bit field, from the same data set, on which dictionary search algorithms
and HA 0.98 both performed poorly. Algorithm 13 (Radix coding) generally performed best, indicating
that the contents are essentially random, but are restricted to some range.

Table 3 Compression factors for a field which is essentially random, but of restricted range

Algorithm #

5 6 7 -l 8 9 J 10 11 12

1.70 1.69 n/a n/a 1.80 1.79 n/a n/a

15 16 17

—
w
—
Y

246 242 239 2.14

o
Y
o

1.66 1.65 n/a n/a 184 1.78 n/a n/a 249 246 243 240 2.15
1.78 1.75 n/a n/a 181 1.77 n/a n/a 249 246 247 244 2.15
1.75 1.75 n/a n/a 1.85 1.80 n/a n/a 249 246 247 244 220
1.73 1.72 n/a n/a 1.78 1.83 n/a n/a 249 246 243 240 223
154 152 n/a n/a 1.76 1.71 1.68 1.65 246 242 234 230 2.03

12

Finally, Table 4 shows the results from a 16 bit field, from the same data set. This is a clear case where
testing multiple algorithms can substantially improve performance. The best algorithms were 4 (Rice
Coding) and 16 (Arithmetic Coding Applied to Differences). Both involve coding the remapped first
differences, indicating that this field follows a fairly smooth curve. Intervals in which method 4
performed better presumably have regions of different activity levels, and so benefitted from its small scale
adaptivity.

Table 4 Compression for a field with mixed statistics

" Algorithm # "

7. Lossy Compression Results and Analysis

The lossless compression factor for Tape AA was 3.54. Purely as a demonstration, TapeAA compression
was made lossy by setting iLoss to 8 for one field, to 4 for two fields, and to 16 for one more field,
creating maximum de-compression errors of 4, 2 and 8, respectively. The compression factor increased
significantly, to 4.58. That represents a reduction in data volume by 23%. The field content is discussed
in [2].

When many different groups integrate their efforts into one system, it is quite likely that greater precision
is needed for some projects than others. Furthermore, they may feel that adding a few extra significant
bits has little impact on the uncompressed data volume. The packet format they agree upon will more or
less include enough significant bits to satisfy everyone.

Unfortunately the last few significant bits tend to have the most activity, and to look the most random.
That means that those few extra bits may substantially impact compressed data volume, as in this case.

In this system we have only included the option of reducing the precision of the information. Other forms
of lossy compression are possible which perform data smoothing. For example, if one were to average
pairs of data points together, the number of points transmitted would be reduced, and the results would
probably be smoother, further increasing the compression factor.

We are not advocating or imposing lossy compression. Rather, it is our intent to make available a
compression system in which any particular data user could elect to make information requests with a
custom configuration which reduces the precision of some data fields. This would enable those users that
wish to do so to trade off bandwidth vs precision, or to transmit more packets at the same bandwidth by

reducing precision.
8. Suggestions for the Development of Future Packet Formats

In section 1.1 we noted that packet data streams represent an administratively efficient solution to the
problem of system integration, but that the administrative efficiency is gained at a considerable cost in

technical inefficiency:

13

(1)

03

Higher data volumes and transmission rates. There are many costs associated with these problems.
For example, in typical remote sensing systems, higher data rates require more transmit power,
resulting in more expensive power systems, and greater payload weight, which has a large impact on
system costs and capabilities.

Greater information complexity. This leads to more complex hardware and software to process the
data. That increases costs. Most importantly, it greatly increases the probability of hardware and
software design errors.

Consequently, a technically inefficient packet format can substantially increase costs, development time,
and risk of failure.

This section is intended to provide guidance to the designers of future packet data streams. We have five
concrete suggestions:

)

)

3)

C))

)]

Keep the format simple. There have been many complex data formats in the scientific and
engineering community which have included unnecessary levels of complexity, such as data format
descriptors, position pointers, and the like. Data format which only contain the necessary information
are much more efficient, and require much less complex processing.

Use bit packed integral binary formats which do not waste any bits. Binary information is inherently
more efficient than text or binary coded decimal (BCD), and integers are much easier to transport,
and are usually more efficient. If some users might have difficulty using bit packed binary
information, the packet specification could easily include sample source code to unpack the data into
text form.

Specify large packet sizes, so that there can be many data points per packet. Each packet in a
complex system involves a substantial amount of administrative overhead, in terms of sync bits,
packet ID’s, routing information, telemetry flags, time tags, error detection bits, and the like.
Increasing the overall packet size decreases the relative fraction of storage, processing, and
transmission associated with the overhead.

Using larger packets simplifies other phases of processing. Small packets lead to the creation of
many different packet types to handle the various housekeeping data fields. That increases hardware
and software complexity. Furthermore, many modern packet communications systems can modify
the order of packet arrival. Hence there must be a packet sort module which places the packets back
into order. Larger (and therefore fewer) packets reduce the costs of packet sorting.

Employ error correction coding, error detection, and error recovery, in order to reduce problems
associated with faulty data transmission and storage.

Employ data compression systems carefully tailored to the data packet stream format and content,
such as the system discussed in this study. The added cost and complexity of the compression
system is often well worth the reduction of other costs.

9. Proposal for Future Development

This section is a proposal for future development during FY 96. We now propose to focus on creating
a prototype which is more practical. That is, it will be closer to being an operational implementation.
The steps that may be worked on include:

()

Complete algorithm 17 (Arithmetic Coding/Rice hybrid).

14

2

(3)

C))

(5)

©®

@)

®
®)
(10

The current system is customized by modification of the source code for a few isolated
subroutines. This is too complex for a near-operational or operational implementation, especially
if the system is implemented in hardware, because configurations may have to change, and it
is desirable to allow a choice of multiple possible simultaneous configurations for different
projects or data formats.

Therefore the packet format customization information will be moved to external tables. These
could be held in files for software implementation, or in separate PROM modules for hardware
implementation.

This improvement could aiso add features such as taking advantage of the restrictions on values
implied by packet type classification, and combining certain fields from several packet types into
one compression stream.

It was noticed that a large improvement in compression factors occurred after the current system
was improved to include all of the frequent types of packet that occurred in the test data sets.
Due to development time constraints, this was not always done in the most optimal fashion.

The easier customization may allow a better application to the current packet types. We will
also actively seek more test data sets, in order to better compress all of the main packet types.

As a separate task, we may also compress a meteorological database, although it is not clear if
the packet compressor represents the best approach to that problem. It may be that off-the-shelf
free or commercial software, such as that included with the database package, will provide

adequate results.

The current prototype stops if an error occurs. An operational system must continue with
minimal loss of information.

Some additional options in lossy data compression should be considered, including at least one
(such as averaging) that employs data smoothing.

As stated earlier, lossy compression will not be imposed, but will be a configuration option for
those groups wishing to employ it.

By far the most important issue to be dealt will be execution speed. There are several
approaches that may be taken:

Improvements in source code efficiency.

Narrowing the choice of compression algorithms for each field within each packet type.
Sacrificing some compression factor in order to use faster algorithms.

Possibly, beginning the development of hardware, such as creating specifications for one
or more application specific integrated circuits (ASIC).

oawy

The current system is implemented as software on Sun SparcStations. This will be expanded
to include other computing platforms.

Provisions must be made to handle real-time data streams, such as data timeout and sync.
Substantial testing and validation must be done.

It will be necessary to begin assembling the System Design Requirements for any operational
systems. Depending on the application, this typically involves such issues as the choice of

15

computing platforms and/or custom hardware, space qualification (if appropriate), power, weight
and size.

(11 Delivery of Documentation and prototype source code.
9. Conclusion

The methodologies discussed in this study can produce significantly higher compression factors on packet
data streams than generic byte stream compression compressors, though at a cost in complexity and speed.
It seems likely that data compression can substantially reduce the costs associated with transmitting and
archiving packet data streams. With all of the types of data that have been tested here, a compression
factor of at least three can usually be assured, provided adequate buffering is used to smooth out the
variation. We now propose to transition efforts towards producing a practical operational system.

10. References

[1] Bell, T.C., Cleary, J.G. and Witten, L.H., Text compression, Prentice Hall, Englewood Cliffs, NJ,
1990.

[2] Choi and Grunes, Computer Systems, Packet Formats and Test Data Sets for the Lossless Data
Compression of Packet Data Streams, October 1995.

[3] Choi and Grunes, Applications of Data Compression Techniques to a Commuunication System,
NRL Memorandum Report 8140.2-95-7742, June, 1995.

[4] Grunes and Choi, "A Packet Data Compressor", NASA GSFC SIMDCWS 95 Proceedings,
October, 1995.

[5] Gailly, Jean-loup, "Comp.Compression Frequently Asked Questions", posted to Usenet news
group comp.compression, 27 July, 1995.

[6] MIL-STD-973, Configuration Management, AMSC No. D6728, 17 April 1992.

[7] Rice, R.F., "Some Practical Universal Noiseless Coding Techniques”, JPL Publication #79-22,
NASA, JPL/CIT Pasadena, CA, March, 1979.

[8] Rice, "Some Practical Noiseless Coding Techniques, Part III, Module PSI14 K+", JPL
Publication #91-3, NASA, JPL/CIT, Pasadena, CA, November, 1991.

91 Williams, Adaptive Data Compression, Kluwer Academic Publishers, Boston, MA, 1991, pp 35.

[10] Williams, ibid, pp 37.

[11] Williams, "An extremely fast ZIV-Lempel Data Compression Algorithm”, Proc. of Data
Compression Conference, IEEE TH0373-1/91, pp 362-371. Actually describes algorithm

LZRW1. The LZRW3A algorithm was described in a computer archive
(ftp://fip.adelaide.edu.au/pub/compression).

16

APPENDIX A
CONFIGURATION MANAGEMENT PLAN

Al. Introduction

Al.1 Task

The main objective of this study has been to develop a compression algorithm that can generate substantial
cost savings and bandwidth reduction. The work has included the development of a proof of feasibility
prototype compression and de-compression system, which can be configured to a wide variety of packet
formats and missions.

This appendix deals with the administrative issues. As such it supplements the technical information
provided in Reference [5]. It also supplies some minor details that would not have been appropriate for
inclusion in the main body of the report.

The purposes of CM plans are discussed in section 3.24 of [3].

The current prototype system has been implemented in software. In addition to discussing basic
configuration management issues, this document will specify the systems onto which the software and test
data are loaded, the methods by which the current system is compiled, run, and transported, and the
methods by which it has been tested. It also briefly discusses the files comprising the system.

Al1.2 This Document

The scope of this document applies to that part of the work performed during FY 94, FY 95, and proposed
to occur during FY 96. It principally defines the details of the work associated with the system as it
currently stands.

The format and content of this plan are intended to comply as much as is practical with MIL-STD-973.
However, those aspects of MIL-STD-973 which are very labor intensive or which require action on the
part of the sponsor have been omitted.

Development of this configuration plan will be incremental. The software is still preliminary, not
operational. The interfaces, working groups, and operational procedures relating to an operational version
cannot be determined. What can be described at the current time are current status and near-term
development plans.

A1.3 Computers

A need exists for a system which can be used with both proprietary and non-proprietary format data.
Therefore, software development and some initial testing with released data is done at a non-proprietary
site on two systems from which files can be transported without excessive security precautions. These
systems are herein called System1 and System2. The editing of proprietary information specification files,
and final testing, are performed at a proprietary site on three systems containing the proprietary
information--herein called System3, System4 and SystemS5, at a facility called EWN.

All the mentioned systems are various models of Sun Sparc work station, running under various Sun Unix
operating systems. It is probable that the software could be compiled and run on some other work

17

stations, but that has not been verified. If this system moves closer to being a practical prototype, versions
will have to be produced that function on other (TBD) types of computer system.

Most of the non-proprietary development work was done on Systeml, a Sun SparcStation 1. This
computer contains a full copy (except for the proprietary information) of the current prototype version
(Rev 0.36), and of the source code for many prior versions.

Executables for the current version are in directory ~grunes/choi and source code for the current version
is in directory ~grunes/choi/Rev0.36.

Other versions are archived in other sub-directories of ~grunes/choi/Rev* (see section 7 for a list).
(~<user> is a convention understood by Unix systems to indicate the login directory of <user>.)

The older versions have been compressed using Unix Compress, in order to save space. One may
uncompress a version by moving into its directory and typing
uncompress *

Note that Unix Compress has no relationship to the compression software that this document deals with--it
was used to compress those files because it is widely available, although it often does not achieve very
high compression factors.

The information on System1 in ~grunes and its sub-directories is occasionally backed up to the NRL file
archiver, called Nrifsl.

Systeml is rather slow. Therefore System2, a Sun SparcStation 20 located at the same facility, is used
for preliminary testing of the prototype software, on the two files (TapeAA and TapeBB) which were
approved for use at the non-proprietary site.

All of the test data, including TapeAA and TapeBB, and the current version of the software, are present
at the EWN facility, in a Sun SparcStation 10 called System3, again in directories ~grunes/choi and
~grunes/choi/Rev0.36. Two of the source files, otherclass.h and othercl2.h (in both directories), were
changed at that site only, in order to reflect proprietary information about packet formats. One report, in
rep9509a.doc and rep9509b.doc, is not present at the non-proprietary site. System3 shares file systems
with a system called System4, which is used to load the software from floppy disk, and to load the test
data from tape. It also shares file systems with a system called System5, which may be used instead of
Systemd4 to load the software from floppy disk.

Al.4 Abbreviations
The following abbreviations are used within this document:

ATSC AlliedSignal Technical Services Corporation

M Configuration Management

FY Fiscal Year

GNU GNU, Not Unix (A Label Associated with the Free Software Foundation)
IBM International Business Machines, Inc.

NRL Naval Research Laboratory

MTI Mentor Technologies, Inc.

18

A2. Reference Documents

The reference numbers in these appendix correspond to those in the main body of the report. This plan
has been created in a form which is intended to follow most of the guidelines of [6]. The interim
technical report for the Data Compression task produced at the end of FY 94 was eventually released as
an NRL Memorandum Report, [3]. The data formats involved are discussed in [2].

A3. Organization

The primary goal up to this point has been to prove the feasibility of using data compression to cut
operating costs. The compression factors achieved appear to be sufficient to prove this feasibility.

For the purposes of this document, the functions within this task are herein designated as Management
and Technical Direction, Software Development, System Administration, and Configuration Management.
Because of the preliminary nature of this work, and the small number of people involved, the
organizational aspects of this task have been minimal, and these functions overlap in terms of personnel.

Overall Management and Technical Direction for the Data Compression task is provided by Junho Choi
(NRL). Software Development has been provided by Mitchell R Grunes (ATSO).

Software Development has had to interface directly with the various Systems Administrators. For
example, for security reasons, direct System Administrator involvement is required to loading information

into EWN facility (see section 5).

Configuration Management is also provided by Junho Choi and Mitchell R Grunes.

Management and Configuration NRL Systems
Technical Direction Management Administration
Junho Choi Junho Choi Sung S. Kwak
NRL NRL MTI
T Mitchell R Grunes
ATSC
Software EWN Systems
Development Administration
Mitchell R Grunes Various
ATSC EWN

Some changes may occur during FY 96. For example, it appears that development of an optimal
compression algorithm requires sample data and bit field boundary information for all of the data types
expected to be processed. This will require our task to actively seek out such information by contacts with

appropriate parties.

It has not been determined whether the operational product should be hardware, software, or some
combination of both. If hardware is involved, interface with some Hardware Development group may be

required.

In addition, testing and verification may be required by other parties in order to improve quality assurance.

19

A4. Configuration Management Phasing and Milestones

We herein describe and portray the sequence of events and milestones for the implementation of
Configuration Management in phase with major program milestones and events.

Milestones were previously established for FY 95:

Milestones from FY 95 O |NID }J F M A M [|] J A S

Complete Algorithm 17 XX
(Arithmetic Coding/Rice hybrid

Reduce Overhead Bits

Improve Predicts X [X

Improve Rice Coding X | X X X

Radix Coding

Arithmetic Coding X | X |X

LZ78 X | X

Simple Lossy Compression X | X X

Compress Meteorological database X X

Deliver: Prototype Source Code X

Deliver: Documentation X

An unexpected delay occurred because the security managers of the EWN facility imposed the reasonable
but unanticipated requirement that the components taken from the externally developed software packages
(LZRW3A and HA 0.98) be carefully examined to ensure that they could not deliberately or accidentally
sabotage anything. As a result the compression of the meteorological databases did not occur in this fiscal
year, and the documentation was slightly delayed. All of the other components were completed as

planned.

20

During FY 96 we propose to focus our efforts on developing a prototype system for practical application.
These plans are discussed in greater detail in section 8 of the main report. These plans may be modified
during development or by the sponsor, but proposed milestones are:

Milestones for FY 96 O|N|D|J|F |[M|A[IM]] J A |S
Complete Arithmetic Coding/Rice X

Hybrid

Table driven packet customization X |X

Obtain more packet types, X |[X[|X |X |X |X

experiment with customization

Compress Meteorological database X | X

Improve error handling

Further work on Lossy X
Compression

Improve execution speed: X
Source code efficiency X
Narrowing algorithm choices
Compromise algorithms
Hardware development?

R
M e
A
e e
MM R
e

Other computing platforms X

Real time data stream handling X | X

Test and Validation X X

System Design Requirements X X

Deliver: Prototype Source Code

Documentation X X X

AS5. Data Management

Most of the data sets used for testing have been provided in the form of Exabyte (8 mm) tapes, or of 9
track tapes.

Two data sets (TapeAA and TapeBB) have been released for use at the non-proprietary facility. ‘The
remaining test data sets in current use are considered proprietary, and transport outside the EWN facility
must be done with the involvement of the ADP Security officer of the EWN facility. The reading of
software into the EWN facility must also be done with the involvement of the EWN Systems
Administrators, or the ADP Security Officer.

The current protocol is to retain all of the data sets used for testing for the duration of the development
task.

During the process of personnel changeover, the media containing two of the test data sets (TapeE and
TapeF) were re-used for other purposes. No records were kept as to their data content, and they cannot

21

be re-constructed. This presents no technical problem, as it is relatively easy to obtain additional test data.
It is unfortunate because the technical report ([3]) produced at the end of FY 94 mentioned TapeE. No
technical reports ever have or ever will make reference to TapeF, which was used only once to verify that
some procedure was working.

As an additional precaution to safeguard the data in the future, the first 125000 packets of each available
test data set are now stored on System3 (in Unix Compressed form), which is itself backed-up on a regular
basis. Information about the test data sets is logged into file

~grunes/choi/tapekey
on computer System3.

A6. Configuration Identification
A6.1 Test Data Set Identification

No changes are expected to be made to the current test data sets, although additional test data sets may
be added. Therefore no configuration version numbers need to be assigned to them. They are referred
to in this document as:

TapeA

TapeB

TapeC

TapeD

TapeG

TapeH

TapeH.big

Tapel

Tapel

TapeK

TapeL

TapeM

TapeAA

TapeBB

All these data sets are archived on System3 in directory ~grunes/choi, as compressed by Unix Compress
(e.g., TapeA was compressed to ~grunes/choi/T apeA.Z).

Additional information on these data sets is available in [2].
A6.2 Software Identification

The software has gone through multiple revisions, and will go through others. The overall compression
algorithm is a hybrid of many simpler algorithms. The revisions have partly been for the purpose of
adding or improving the compression algorithms in the hybrid, and partly for the purpose of better
adapting the software to the format and statistics of the data. At preliminary implementation, these
improvements have sometimes introduced temporary defects into the software. Some revisions have been
designed to remove the defects in other revisions. In addition, some revisions have changed the
information output by the software. The current revision level (0.36) has no known defects, and has been

subjected to a moderately high degree of testing with the current test data sets (see section 7.4).

22

No log has been kept of the changes that were made in each revision, owing to the preliminary and non-
operational state of the prototype. However, archives of prior versions are being kept on Systeml. Each
revision has been assigned a version number. These version numbers all start with "0.", indicating that
they are preliminary. The first released version would start with "1.". On System1, the source code for
each version is in a separate directory. Past and current versions include:

~grunes/choi/Rev0.0
~grunes/choi/Rev0.1
~grunes/choi/Rev0.2
~grunes/choi/Rev0.21
~grunes/choi/Rev0.22
~grunes/choi/Rev0.23
~grunes/choi/Rev0.24
~grunes/choi/Rev0.25

~grunes/choi/Rev0.25.long (variant of Rev0.25 which did not terminate after first few packets)

~grunes/choi/Rev0.26
~grunes/choi/Rev0.27
~grunes/choi/Rev0.28
~grunes/choi/Rev0.29
~grunes/choi/Rev0.30
~grunes/choi/Rev0.31
~grunes/choi/Rev0.32
~grunes/choi/Rev0.33
~grunes/choi/Rev0.34
~grunes/choi/Rev0.35
~grunes/choi/Rev0.36

~grunes/choi/Rev0.36.Lossy

(Version of Rev0.36 which performed lossy compression on type
3 packets. In particular, SpecPak was modified for type 3 by
setting iLoss to 8 for field 12, to 4 for fields 14 and 16, and to 16
for field 19.)

If this prototype is adapted for operational use, it will be desirable to keep logs of the changes that occur
in each version, and the reasons for those changes. A future version of this document could formalize
those requirements, if further development occurs on this task.

A6.3 Descriptions of Files

This section describes the files comprising the compression/de-compression system at the current time.

The following file name suffixes were used:

File name suffix File category

.c

for

.sh

C language source code

Fortran language source code

C or Fortran source code included by some other program(s)

Unix command sequences. May be executed by
source <filename>

23

.8C

(no suffix)

"Scratch” files:
Temporary files
Output from the last set of test runs

A file compressed by Unix Compress. May be de-compressed by

uncompress <filename>
The uncompressed file name would be identical, but without the .Z. For example,
~grunes/choi/Rev0.34/callpdc.for.Z is a Unix Compressed version of the fortran source
callpdc, for an old revision.

Other:
Executables--programs which have been compiled and linked, and are ready to
run. The name of the executable is the prefix of the file name which contains the
mainline program.

Data files--various data files.

In alphabetical order, the following files are located in ~grunes/choi. Some scratch files may not always
be present. Additional documentation is included in the source code itself.

a.sc

a.sc.TapeA.Z
a.sc.TapeB.Z
etc.

b.sc

blockha

callpdc

calipdd

comp.sc

input.sc
mitchcopy

output.sc

Scratch file holding test run output.

Unix compressed scratch file holding test run the output from test runs for TapeA, TapeB,
etc. See section 6.1.

Temporary file holding output from individual program. Unix commands head, tail and
grep are used during processing to extract portions of this into a.sc.

Executable derived from the latest revision blockha.for and other files. The same
compression software as callpdc, but limited to the HA 0.98 algorithm (method 11),
working on blocks the blocks of 512 packets as byte streams (not as separate fields).

Executable derived from the latest revision callpdc.for and other files. The compression
program.

Executable derived from the latest revision callpdd.for and other files. The de-compression
program.

Scratch file holding output from callpdc or blockha--the compressed data. Serves as input
for calipdd.

Scratch file holding input for callpdc or blockha--the original data.
Executable derived from the latest revision mitchcopy.c. The disk/tape file copy program.

Scratch file holding output from callpdd--the de-compressed data.

24

rep9509.doc

rep9509a.doc
rep9509b.doc

runall.sh

rundisk.sh

runtape.sh

Rev0.0

Rev0.1
etc.

TapeA.Z

TapeB.Z
etc.

tapecf

tapekey

unpack.sh

This is a draft of the main report

Choi and Grunes, Lossless Data Compression of Packet Data Streams.
intended for use by the Technical Information Division of NRL to produce an NRL
Memorandum Report. It was prepared using Word Perfect 5.1 for DOS.

Draft of the supplementary report containing proprietary information:
Choi and Grunes, Computer Systems, Packet Formats and Test Data Sets for the
Lossless Data Compression of Packet Data Streams.
Not present in the Systeml archive. It was prepared using Microsoft Word 5.1 for
Macintosh format. rep9509b.doc duplicates some rep9509a.doc, but puts them properly in
landscape orientation.

Runs the test sequence rundisk.sh on all of the data sets, and renames the output to
a.sc.TapeA, a.sc.TapeB, etc. This file is only present on System3.

Procedure copied from the latest revision source code directory. Runs the test sequence on
a data set which has been copied to file Tape. Output goes to a.sc.

Procedure copied from the latest revision source code directory. Creates file Tape from a
tape drive, then runs rundisk.sh. Purely an example.

Directories holding revisions of source code. See section 6.2

(Unix compressed) test data sets.

Log used to record the compression factors extracted from the run output files. Only
present on System3.

Log containing descriptions of the test data sets. Only present on System3.

Procedure copied from the latest revision source code directory. Used to unpack the
archive extracted from the floppy disk, when moving files from System1 to System3.

The following files are found in ~grunes/choi/Rev0.36.

acoder.c

acoder.h

asc.c

asc.h

Part of the HA 0.98 software package, somewhat modified by Software Development.
Contains the arithmetic coding routines used by HA 0.98.

Part of the HA 0.98 software package.

Part of the HA 0.98 software package, somewhat modified by Software Development.
Associated with the HA 0.98 ASC compression method.

Part of the HA 0.98 software package.

25

blockha.for

bufio.c

bufio.h

callpdc.for

callpdd.for

check.h

compile.sh
compress.h
debug.h

€rror.c

Modified version of callpdc.for used to create blockha. This is a variant of the mainline
program which calls the compression software.

Stubs to allow Fortran programs (including those in mitchlib.for) to call Unix low level /O
routines. Used by the BUFIO section of mitchlib.for. Contains source code for:

Routine Fortran Call Is a stub to call

openc_ call OpenC(iUnit,FilNamAr,InOut) open or creat (open or create file)
closec_ call CloseC(iUnit) close (Close file)

readblock_ call ReadBlock(iUnit,nByte,A) read (Read data)

writeblock_ call WriteBlock(iUnit,nByte,A) write (Write data)

seekc_ call SeekC(iUnit,iPos) Iseek (Seek file)

Include file used by mitchlib.for to specify parameters and common variables for buffered
unformatted I/O.

Mainline program for compression. This is the mainline program which calls the
compression software.

This is the mainline program which calls the de-compression software. Also includes
source code for:

subroutine PutData(iData,iPakType,Index) Subroutine to output or store de-compressed

data.
subroutine PutData2(FileData) Subroutine to output 1 record.
function igetc_comp(idummy) Reads one byte from compressed stream.
function iRdbit(nBit) Read iVal from Pack buffer in nBit bits.
logical function GetFlag(iVal,nBit, Read condition bit.
idefault) If true, read iVal, else=default.

Sets icheck to 1 to indicate that output from de-compression will be checked against
original input.sc file.

This must be changed to 0 for lossy compression, or if check is not desired.

Procedure to compile programs.

Part of the LZRW3-A package.

Indicates desired level (normally 1) of debug output.

Part of the HA 0.98 software package, somewhat modified by Software Development.

26

error.h
fast_copy.h
hah

haio.h
hsc.c

hsc.h

lzrw3-a.c

machine.h

maketar.sh

mask.h

mitch_ha.c

mitchcopy.c

mitchlib.for

Part of the HA 0.98 software package, somewhat modified by Software Development.
Part of the LZRW3-A package.

Part of the HA 0.98 software package, somewhat modified by Software Development.
Part of the HA 0.98 software package, somewhat modified by Software Development.
Part of the HA 0.98 software package, somewhat modified by Software Development.
Part of the HA 0.98 software package, somewhat modified by Software Development.

Part of the LZRW3-A package, somewhat modified by Software Development. The
external interface routine is lzrw3a_, called from Fortran as

call 1zrw3a(1,nInput,input,nOutput,output)
Part of the HA 0.98 software package, somewhat modified by Software Development.

Procedure to generate a compressed tar archive, and copy some executables and procedures
to the directory above.

Contains bit masks, used by many programs.

Contains Fortran callable stub to call the HA 0.98 software package. Called from Fortran
as

call mitch_ha(MitchlnLen,MitchIn,iWhich,iDirection,MaxMitchOutLen,
MitchOutLen,MitchOut)

A disk and tape file copying utility that does not suffer from the block size restrictions of
Unix dd and copy commands. Unlike Unix tcopy, it only copies one file, and allows one
to limit file size. A mainline program.

Contains some general library routines, used by compression and de-compression programs.
Includes the following packages and routines:

BIGINT: Simple multiple precision non-negative integer arithmetic package, to do addition,
decrement, multiplication and division. :

subroutine BigTo(i,n, a) Convert normal non-negative integer i to big
format.

function iBigFm(n,a) Convert big format to normal integer.

subroutine BigCopy(n,a, b) Copy b to a.

function LoadByte(a) Convert byte to unsigned integer.

27

function iGetnUse(n,a)
subroutine PutnUse(nUse,n, a)
subroutine BigAddI(n,a,i)
subroutine BigAdd(n,a,b)
subroutine BigDecr(n,a)
subroutine BigMulAddI(n,a,i,j)
subroutine BigMul(n,a,b, ¢)
subroutine BigDivI(n,a,i, iRem)

subroutine BigPrint(n,a,mes)

Get number of bytes coded in a(n) and a(n-1).
Stuff nUse into a(n) and a(n-1).

Big format mixed addition.

Big format integer addition.

Big format integer decrement.

Big format mixed multiplication and addition.
Big format integer multiplication.

Big format mixed division.

Print a big number.

BUFIO Fast raw sequential or direct buffered file /O.

block data bd_bufio
subroutine OpenIn(iUnit,FilNam)
subroutine OpenOut(iUnit,FilNam)

subroutine CloseFile(iUnit)

subroutine ReadFile(iUnit,nByte,A,*)

iReadFile1(iUnit)

subroutine WriteFile(iUnit,nByte,A)

subroutine FlushFile(iUnit)
subroutine ReadBlock(iUnit,nByte,A)
subroutine WriteBlock(iUnit,nByte,A)

subroutine SeekFile(iUnit,iPos)

Defines common data variables.
Open file for input.
Open file for output.

Close file on unit iUnit, flushing buffers and
initializing variables.

Function to Read nByte bytes from unit iUnit
to byte array A.

Read 1 unsigned byte from unit iUnit.

Write nByte bytes from byte array to unit
iUnit.

Flush file buffers.
Read nByte bytes of data into A.
Write nByte bytes of data from A.

Seek (position) file to 1-origin byte position
iPos.

MISCELLANEOUS Other Routines

28

nrlpdc.for

subroutine PrintStr(iUnit,string,iflush)

subroutine PrintAr(iUnit,label,iArray,n)

subroutine PrintCnt(iUnit,label Iarray,n)

subroutine Shell(command)
integer*2 function int23i)
subroutine Err(iflag,a)
subroutine WrBit(iVal,nBit)
subroutine InitWrBit

subroutine FlushWrBit

If iflush=0, append string into line, print if full.
If iflush>0, flush.

Print array.

Print counts of occurrences.

Execute operating system command.
Function missing from Sun.

An error message handler.

Write iVal in nBit bits.

Initialize WrBit buffers.

Flush WrBit buffers.

Most of the subroutines specific to the compression program. Included routines are:

subroutine NRLPDC(iflush,iData,
iPakType,nField,nSubField,nBit,

Main compression subroutine.

iBlock,Lossless,iLoss,MaxStore,iStore,nPack)

subroutine BitPlusFollow(iVal,
iBitsToFollow,iUse,iTry)

function CF(nBitsOrig,nBits)

subroutine FitDelta(iDelta,nStore,iUse,
MinDiff MaxDiff,iAlpha,iBeta)

function iGCF(iUse,iStore,nStore,
MaxVall, MaxVal2,iTotal)

subroutine ToByte1(nStore,iStore,
nBit, MaxnBuf, Buf,iBuf)

subroutine ToByte2(iUse,nStore,
nBit,nBuf,Buf, MaxnBuf, iTry)

function iReMap1(iVal, MinAbs,
MinVal,MaxVal,iBest,SomeNeg)

function iSendRice(iUse,iDiff k,mx2,

29

Arithmetic coding routine to output 1 bit,
plus opposite values.

Compression factor.

Try to improve predicts using least squares
fit.

Find, send and divide by
greatest common factor.

Part 1/2 in byte stream handler.
Part 2/2 in byte stream handler.
Reversibly remap value iVal into

non-negative number.

Send one Rice code.

nFill,iWork)

function iSendRice2(iUse,iStore,] k,
MaxRem,nFill,iWork)

function iTry0(iUse,iStore,nStore,
nBit)

function iTry1(iUse,iStore,nStore,nBit,
iConstant)

function iTry3(iUse,iStore,nStore,nBit,
MaxRun,nBitRun)

function iTry4(iUse,iStore,nStore,
iBlock,MaxRem,iRice, kArray,
kDelta,iWork)

function iTry5(iUse,iStore,nStore,nBit,
LinkList)

function iTry7(iUse,iStore,nStore,
nBit)

function iTry9(iUse,iStore,nStore,nBit,
LinkList,iil,iL)

function iTry11(iUse,iStore,nStore,
nBit)

function iTry13(iUse,iStore,nStore,
nBit)

function iTry15(iUse,iStore,nStore,nBit)

function iTry20(iUse,iStore,nStore,
nBit,Lossless,

function iTryReMapAll(iStore,nStore,
nBit,iUse,NoRepeat,
Lossless,MapStyle,iDelta,iWork,
MaxRem,iAlpha,iBeta)

function iWhichRice(iStore,i1,J,nBit)
subroutine PrintID(nPack,iPID)
subroutine ReMap(iStore,nStore,

MapStyle,nBit,iUse,NoRepeat,

30

Rice Code a Sequence.

Try Method O=Uncompressed.

Try Method 1: Constant value.

Try Method 3: Run Length Encoding.

Try Method 4: Rice.

LZ77G technique.

LZRW3a technique.

Apply LZ78G technique.

Try Method 11: HA.

Try Method 13: Radix Coding.

Try Method 15: Arithmetic Coding.

Try Method 20: RLE+Rice.

Try each MapStyle for ReMap.

Choose which Rice code to use.
Print included packet ID fields

Turn values into differences from
predicts and remap to a positive

nrlpdc.h

mrlpdd.for

Lossless,iAlpha,iBeta,iDelta,iWork,
iTry,MaxRem,iSum)

subroutine RemCnBits(iStore,nStore,
nBit, mask,iConst,nBitKeep)

logical function SendFlag(cond,iVal,
nBit,iUse,iTotal)

subroutine TryAll(iField,iBlock,
Lossless,iStore,nStore,nBit,nBitOrig,
MinBits,iDelta,iWork1,iWork2,iWork3)

number.

Remove Constant bits.

If cond false, send O bit.
If cond true, send 1 bit, and send value.

Try all compression methods.

function iWrRad(iVal,MaxVal,flush,iUse) Write iVal using radix coding.

Include file, used by callpdc.for, nrlpdc.for, and specpak.for.

Most of the subroutines specific to the de-compression program. Included routines are:

subroutine NRLPDD(iData, iPakType,
nBit,MaxStore,iStore,nPack,PutData)

subroutine FmByte1(nStore,nBit,nBuf,
Buf, iStore)

subroutine FmByte2(nStore,nBit,
MaxnBuf, nBuf,Buf) '

subroutine GetRice2(iStore,J .k,
MaxRem,iRice, nFill,iWork)

subroutine GetUnMapInfo(nBit,
nStore,MapStyle10,Lossless,
MapStyle,NoRepeat,iGCF1,iGCF2,
iPredictl MinVal,MaxVal5,
MaxRem,MinAbs,SomeNeg,UseFit,
iAlpha,iBeta)

function iGetRice(k,mx2)

function iUnMap1(iReMap,MinAbs,
MinVal, MaxVal,iBest,SomeNeg)

subroutine RdRad(nVal,MaxValAr,
iValAr)

subroutine UnMap(iStore,nStore,nBit,

MapStyle,iGCF1,iGCF2,MinVal,
MinAbs,MaxVal5,MaxRem,SomeNeg,

31

Main de-compression routine.

Undoes ToBytel.

Undoes ToByte2.

Get a Rice Sequence.

Read info required to unmap differences.

Get one Rice code.

Reverse iReMapl.

Read iValAr using radix coding--undoes
iWrRad.

Unmap remapped values.

UseFit,iAlpha,iBeta)

subroutine UnTryO(iStore,nStore,nBit) Uncompress Method 0: No compression.
subroutine UnTry1(iSiore,nStore,nBit) Uncompress Method 1.

subroutine UnTry3(iStore,nStore,nBit) Uncompress Method 3.

subroutine UnTry4(iStore,nStore, Uncompress Method 4.
iBlock,MaxRem,kArray)

subroutine UnTry5(iStore,nStore,nBit) Uncompress Method 3.
subroutine UnTry7(iStore,nStore,nBit) Uncompress Method 7.

subroutine UnTry9(iStore,nStore,nBit, Uncompress Method 9.

iil,iiL)

subroutine UnTry11(iStore,nStore, Uncompress Method 11.
nBit)

subroutine UnTry13(iStore,nStore, Uncompress Method 13.
nBit,iWork)

subroutine UnTry15(iStore,nStore, Uncompress Method 135.
nBit)

subroutine UnTry20(iStore,nStore, Uncompress Method 20.
nBit,Lossless, iWork1,iWork?2)

subroutine UnTryAll(iStore,nStore, Uncompress all methods.
nBit,Lossless,

iBlock,iWork1,iWork2)

nrlpdd.h Include file, used by callpdd.for and nrlpdd.for.

otherclass.h Include file, used to classify certain types of packets on the basis of proprietary packet ID
information. The version included in the System!1 archive is ineffectual. The version in
System3 reflects the proprietary information.

othercl2h Include file, used to determine which of the proprietary packet types should have their data
word components treated as a byte stream (vs as separate words). The version included in
the System! archive merely selects packet type 2, which includes packets of the correct
generic type, but which have packet ID’s which the software does not specifically address.
The version in System3 reflects proprietary information. It was determined by empirical
testing on each of the proprietary packet types.

port.h Part of the LZRW3-A package.

32

rdbit.h

rundisk.sh
runtape.sh

specpak.for

swdict.c

swdict.h

Include file, used to hold common block variables associated with bit field unpacking
routine irdbit.

Procedure used to run the test sequence on file Tape. Output is saved to file a.sc.
Procedure used to run the test sequence on all the test data sets.

Contains routines common to the compression and de-compression software. This differs
from mitchlib, in that the routines are not generic enough to be likely to be included in
other software packages.

Some of these routines are very specific to the packet format. Specifically, routine Classify
determines packet types, SpecPak provides the compression and de-compression software
with information pertaining to the data fields, UnPak unpacks the original packets into the
data fields, and Pak packs the data fields back into data packets.

Included routines are:

subroutine Classify(FileData,nPack, Determine packet types.
iPakType)

subroutine ContractBits(mask, Contract 24 bit word.
MaskBits)

subroutine ExpndBits(mask,MaskBits) Expand 24 bit word.
function nBitNeed(i) # of bits to send i.

subroutine InsCnBits(iStore,nStore, Insert Constant bits.
nBit, mask,iConst)

subroutine Pak(iData,iPakType, Pack packets.
FileData)

subroutine SpecPak(iPakType,nField, Specify packet formats.
nSubField,nBit,iBlock,LossLess,
iLoss)

subroutine UnPak(FileData,iPakType, Unpack data.
iData)

subroutine ApplyFit(iDiffOld,iAlpha, Revise predicted difference using
iBeta,MinD,MaxD,MinDiff MaxDiff, parameters from iFitDelta.

Wrap, iDiffBest)

subroutine WrapVal(iVal,Min,Max) Wrap ival around if outside range.

Part of the HA 0.98 software package, somewhat modified by Software Development.

Part of the HA 0.98 software package, somewhat modified by Software Development.

33

unpack.sh Procedure used to unpack the contents of the compressed tar archive, after moving the
archive from System1 to System4.

wrbit.h Include file, used to hold common block variables associated with bit field packing routine
wrbit.

A7. Interface Management
A7.1 General Information

The interface between the user and the software, and between the software and the data it inputs and
outputs, are both in preliminary state. This is necessary because it has not yet been determined what form
(e.g., tape, disk, network lines, etc.) the data will be input and output in. The interface is sufficient for
initial testing and development, but is not adequate for an operational product. This version of plan
documents the current configuration.

A7.2 Compilation of Software

Most of the source code developed by Software Development is in the Fortran 77 programming language,
using a few common extensions. However, it proved most practical to perform unformatted I/O (input
and output) in C. Two externally developed software packages (LZRW3-A and HA 0.98) were also
written in C.

The current software version has been successfully compiled and run on Sun Sparc work stations Systeml,
System2 and System3.

Systeml is running SunOS release 4.1.3. Software is compiled on System1 under release 2.0.1 of the Sun
F77 Fortran compiler and release 2.6 of the GNU GCC compiler.

System? is running SUNOS release 5.4. Software is compiled and run on System?2 under release 3.01 of
the Sun F77 Fortran compiler and either the fusr/ucb/cc compiler, or the SunPro C compiler.

System3 is running SunOS release 5.3 (Unix System 5 Release 4.0). Software is compiled on System3
under release 2.0.1 of the Sun F77 Fortran compiler and release 2.01 of the Sun CC compiler. For
security reasons, and to take into account the modified otherclass.h and othercl2.h files, the software is
re-compiled on System3. (As of this writing the system administrators of System3 are in the process of
upgrading System3 to SunOS release 5.4.)

Sun operating systems and C language compilers vary substantially from version to version. Very careful
software development is needed to ensure that C language programs will compile under more than one
version. Our Software Development group attempted to create portable code. Unfortunately, that could
not be required of the externally developed software packages. Some of the externally developed C
software will not compile under an early version of the Sun CC compiler, which is loaded on Systeml
(so GCC was used instead). It cannot be guaranteed that the software will continue to compile, link and
run under future Sun software releases.

It is necessary to match the versions of the Sun Fortran and C compilers, or object modules may not link
properly. However, executables created on earlier versions of the operating system seem to run properly
on later versions of the operating system. For example, executables created on Systeml run on System?2).

34

Compilation is fairly simple on Systeml and System3. Log into user account grunes, and type:
cd choi/Rev0.36
source compile.sh

This runs the compilers, and creates the executables. Some warnings are given during this procedure:

(1) "mv" commands are used to rename some files. If renaming is not needed, these commands print
a warning. Renaming was used because source code has often been edited on an IBM PC compatible
computer running under MS-DOS, which could not handle long file names.

(2) The C compiler and linker may give additional warnings. On Systeml, the warnings look like
1d.so; warning: /usr/lib/libc.so.1.8.1 has older revision than expected 9

On System3 the warnings resemble
semantics of "<operation>" change in ANSI C; use explicit cast

All these warnings may be safely ignored.

One may compile the software on System2 in the same way as on System3, with a few more warning
messages.

A7.3 Transport of Software

Development occurs on Systeml, which is backed up on the NRL file archiver to prevent loss of data.
Software is then transferred to System2 and System3. The System2 archive may be deleted to save space.

The grunes account on System1 is backed up to the NRL file archiver by logging into Systeml account
grunes and typing:

tar -cvf systeml.tar * .27*
compress system|.tar
ftp nrifsl

grunes

(enter password)
binary

send systeml.tar.Z
quit

rm systeml.tar.Z

To transfer the executable software from Systeml to System2, Log onto System2 account grunes and type:

cd ~grunes/choi
mkdir Rev0.36
ftp systeml
grunes

(enter password)
binary

prompt

mget *.sh

get callpdc

get callpdd

35

get blockha
get mitchcopy
cd Rev0.36
lcd Rev0.36
mget *

bye

Modify the compilation procedure to reflect the use of a different compiler, by replacing "gec" with "cc -
I -Xc":

cd ~grunes/choi/Rev(.36

vi compile.sh

:%s/gee/cc -1. -Xc/

wq

The software is transported from System1 to System3 on a Sun Unix tar format 3.5" DSHD (double sided
high density) floppy disk. Before creating that disk, compile the software on System1 (see previous
section), so that all files will be renamed and in the proper location.

The floppy disk should be formatted by placing it into a 1.44 MB drive on an IBM PC compatible
computer, and typing
format b: /u

Sun work stations can also format floppies, but have problems doing so under certain circumstances.

On Systeml, type:
cd ~grunes/choi/Rev0.36
source maketar.sh

This deletes all of the object and executable files, creates a compressed archive (~grunes/choi/nrlpdc.tar.Z),
and copies four files (mitchcopy, unpack.sh, rundisk.sh, and runtape.sh) into ~grunes/choi.

Finally insert the formatted floppy disk into Systeml, and type:
tar -cvf /dev/fdOa nrlpdc.tar.Z unpack.sh
eject floppy
rm nrlpdc.tar.Z

To load the software into System3, one could log into System4 user account grunes, load the floppy and
type:

cd ~grunes/choi

volcheck

tar -xvf /vol/dev/rdisketteO/unlabeled
eject

However, the system administrators of System3, System4, and System5 have insisted that they load the
software themselves, for security reasons. They sometimes prefer to use their own procedures to do so.

36

It is strongly advised that they be told to do the equivalent of:
su -
cd ~grunes/choi
volcheck
tar -xvf /vol/dev/rdisketteQ/unlabeled
eject
chown grunes *

(For some reason it may be necessary to give everyone write permission to ~grunes and ~grunes/choi
before root can write to those directories.) If they choose to use another procedure, make sure that they
copy the contents into directory ~grunes/choi. Leaving out the "volchec " could cause the somewhat
unreliable floppy drive to fail. Leaving out the “chown" could cause problems with future updates, and
make it impossible to delete the archive file.

Regardless of how the software is loaded, one should complete the load under account grunes by typing
cd ~grunes/choi
source unpack.sh

Use the modified otherclass.h and othercl2.h files by typing
cd ~grunes/choi
cp otherclass.h Rev0.36
cp othercl2.h Rev0.36

If otherclass.h should ever be modified to add packet type numbers greater than 20, one must also alter
MaxiPakType in nripdc.h and nrlpdd.h.

Modify the compilation procedure to reflect the use of a different compiler, by replacing "gec" with "cc -
I -Xc":

cd ~grunes/choi/Rev0.36

vi compile.sh

:%s/gcce/ce -1. -Xc/

'wq

Compile the software as specified in the prior section.
A7.4 Running the Software

At the current time, the prototype software takes its data from disk files, and places its output into disk
files. The test data was loaded to disk from magnetic tape cartridges and 9 track tapes. Those tapes
contained a header file, the data file, and a trailer file. L

Several different techniques were tested to load the data. Initially, attempts were made to use the
following Unix utilities to copy the data:
dd

Py
tcopy

Unix dd and cpy failed due to restrictions on tape block sizes. The Unix tcopy command tries to copy
all of the files, cannot be told to stop after a certain file size, and produces an error message. Therefore

use of all of those utilities was abandoned.

37

The administrators of System3 and System4 have also developed software which can make tape-to-disk
copies. However, tests indicated that it produces a copy which does not appear to be in the appropriate
format. (It might be that it adds a header section which causes the packet boundaries to be misaligned.
The compression software is designed to work on the packet data, not the header and trailer files. The
packet data is located on the second file on those tapes.) The administrators have since then stated that
it might also be able to produce an original format copy, but this has not been verified at this time.

The simplest solution, for the present, is to use a Copy program called mitchcopy, developed for other
purposes. To load the data onto disk, log into System4 user account grunes, load the tape into tape drive
/dev/nrst2 (other tape drives can also be used) and type:

cd choi

mt -f /dev/nrst2 rewind

mt -f /dev/nrst2 fsf 1

mitchcopy /dev/nrst2 TapeZ 2000000

The output file name TapeZ is arbitrary. The 2000000 limits the disk file size. To save disk space, apply
Unix Compress:

compress -f TapeZ
which outputs a smaller archive called TapeZ.Z.

If new files to be tested are added, one should edit file
~grunes/choi/runall.sh
to include tests on the new data sets.

One can run all of the software and tests (discussed in more detail in sections 7.5 and 7.6) by typing
cd ~grunes/choi
nice -20 source runall.sh &

The "nice -20" helps ensure that this long job will run at reduced priority. The "&" causes the program
to run as a "batch" job, which means that it will continue running after one logs off. (Prior to logging
off, results will also be output to the screen.)

After the procedure is complete, there will exist, in directory ~grunes/choi, output files
a.sc.TapeA
a.sc.TapeB
etc.
which can be examined. The output files can be compressed using
cd ~grunes/choi
compress a.sc*

The procedure runall.sh actually invokes another procedure, rundisk.sh, for each of the data sets. If one
only wants to run the procedure for one data set, type

cd ~grunes/choi

zcat TapeZ.Z > Tape

nice -20 source rundisk.sh &
(where TapeZ.Z is the name of the Unix compressed data set).

Runall.sh outputs the results of the software and tests to file a.sc.

38

A7.5 Testing and Verification

This is a preliminary prototype, not operational software, and it is not necessary that the software be free
of all defects. Nonetheless, no defects are known to exist in the current version (0.36) of the software,
which was tested on all of the test data sets.

The compile.sh procedure compiled the software with error checking (such as Fortran language subscript
checks and floating point exceptions) turned on, in order to improve the probabilities that an error would
be detected. In all of the tests, all of the programs ran to completion, indicating that these problems did
not exist.

The test procedure (runall.sh) involved running all of the following tests, on each of the test data sets:
1. The first 80000 bytes of the file is copied to file input.sc.

2. Unix compress is tried on this file. The compression factor for Unix compress can be computed as
the ratio of the sizes of file input.sc and the compressed file input.sc.Z. Unix uncompress is used
to restore the file to a readable state.

3. The compression executable, callpdc, is run to produce compressed file comp.sc. It prints out various
statistics. At the end it prints out a final cumulative compression factor. In every instance the
program ran to completion without error.

4. The compression executable, callpdd, is run to produce de-compressed file output.sc. The program
is currently set to compare each output packet to the corresponding packet in input.sc, and fail if there
is a difference. In every instance the program ran to completion without error.

5. The Unix cmp command is used to test whether input.sc and output.sc are identical. This test was
successful in every instance.

6. Steps 2-5 were repeated on the whole data set. In every instance, all tests were successful.

All of these tests were performed by Software Development. As the prototype moves closer to being an
operational version, other parties should become involved in software testing and verification.

A7.6 Sample Output

This section lists the lines of the rundisk.sh procedure, and the output that it produces, using a sample run
with TapeAA as an example.

To run this, login to the grunes account and type
cd ~grunes/choi
zcat TapeAA > Tape

nice -20 source rundisk.sh

The first few lines of rundisk.sh remove "aliases" that system administrators sometimes use to modify the
actions of Unix commands, and delete old scratch files:

39

Run this using

cp <diskfile> Tape

source rundisk.sh

This will take a long time.

echo —————=——=——————m————————————————— oo oo o —momT T
echo Deleting aliases and old files.

unalias 1s

unalias mv

unalias rm
echo rm Tape.Z core *.sc input.sc.Z Rev0O*/*.scC

rm Tape.Z core *.sc input.sc.Z Rev0*/*.sc

echg ————=—————————————-———————--o—C oo oommmTEmm T |& tee —a a.sc
echo -—————-—- This will take a long time--—--—---—- |& tee —a a.sc
echo ————————= You may as well walk away--—-————""" |& tee —a a.sc
sleep 5

————————— This will take a long time--—-———--
————————— You may as well walk away--————-—"~

Rundisk.sh then lists the date and the characteristics of the Tape file:

echo date |& tee —a a.sc
date |& tee —a a.sc
echo ls -lad Tape |& tee —a a.sc
1s -lad Tape |& tee —a a.sc

which produces the following output:

date

Tue Sep 19 15:10:54 EDT 1995

ls -lad Tape

-rw-r--r-- 1 grunes 45456 Sep 19 15:09 Tape

Rundisk.sh then runs Unix compress on a short run (limited to at most 80000 bytes=5000 packets):

echo —————=—————=—=———— Short Run-——-————=——=—==—=—- |& tee —a a.sc
echo ./mitchcopy Tape input.sc 80000 v=0 |& tee —a a.sc
./mitchcopy Tape input.sc 80000 v=0 |& tee —a a.sc
echo —————===—=—=———————— s —————— s oo oo —mm e E e |& tee -a a.sc
echo ———————- Try Unix Compress-———-———-=- |& tee —a a.scC
echo 1ls -lad input.sc |& tee -a a.sc
1s -lad input.sc & tee -a a.sc
echo nice -20 compress -—-f input.sc |& tee —a a.sc
nice -20 compress —-f input.sc |& tee —a a.sc
echo 1ls -lad input.sc.Z |& tee —a a.scC
1ls -lad input.sc.Z |& tee —a a.sc
echo nice -20 uncompress input.sc |& tee —a a.scC
nice -20 uncompress input.sc |& tee —a a.sc

which produces the following output:

—————————————————— Short Run-—-—--—=——————-===~~"

./mitchcopy Tape input.sc 80000 v=0

src=Tape dest=input.sc m=80000 b=65535 s=0 v=0

rec 1 Input bytes=45456 Output bytes=45456 Errors= 0

———————— Try Unix Compress———-———-—-

1s -lad input.sc
-rw-r—--r—-—- 1 grunes 45456 Sep 19 15:10 input.sc

nice -20 compress -f input.sc

1ls -lad input.sc.Z
-rw-r--r-—- 1 grunes 26518 Sep 19 15:10 input.sc.Z

nice -20 uncompress input.sc

One may compute the compression factor as 45456/26518=1.7 1.

Rundisk.sh then runs the compression software on the short sample, but only lists the last 13 lines of its
output. "Nice" is used to reduce execution priority:

|& tee -a a.sc

echo ————=——————=——m——— - —— oo - oo —emsmom oo
echo ——————- Try NRLPDC with all methods-————————- & tee —a a.sc
echo nice -20 ./callpdc |& tee —a a.sc
nice -20 ./callpdc |& tee b.sc
echo -—-——-———-— Last 13 output lines——-—=-———-- >> a.sc
tail -13 b.sc >> a.scC

which produces the following output:

———————— Try NRLPDC with all methods—---—--—--

nice -20 ./callpdc
—————————— Last 13 output lines—————————-

dhkhkhk*k hhkhkkk Fhkhkhkk dkkkkk Khkkkk FhkkAkh khkdkkk *khkhkkk hhkkhkk Fhkkhkok

19 2 1.22 4496 ***** 3672 3957 3775 3960 4043 ***xx Hxwaw
5620 5683 ***** w+x¥x 3698 3778 **kxx *xxxx 3777 3797

PIDs=281*23

281 Input Packets Packet Type= 3 CF= 4.03636 rec= 2561
CF=orig_bits/compressed= 35968/ 8944= 4.02147 with overhead
Cumulative CF = 363648/ 102792= 3.53771
==End of File==
== (0 Warnings 0 Errors==

Note: this program was linked with -fast or —-fnonstd
and so may have produced nonstandard floating-point results.
Sun’s implementation of IEEE arithmetic is discussed in
the Numerical Computation Guide.
The only important components here are
Cumulative CF = 363648/ 102792= 3.53771

which shows that the compression factor was about 3.54, and
== (Warnings 0 Errors==
which shows that the software completed without error.

The warning about nonstandard floating-point results only means that the program would have aborted
if a floating point error had occurred, which was considered a desirable goal while testing the prototype.

The warning can be safely ignored.

Rundisk.sh then runs the de-compression software, and compares the original uncompressed input to the
de-compressed output:

echo nice -20 ./callpdd |& tee -a a.sc
nice -20 ./callpdd |j& tee b.sc

41

echo —————————- Last 10 output lines >> a.sc

tail -10 b.sc >> a.sc
echo -——————-—————————~— Doing Compare--——-—————————"———=-= |& tee —a a.sc
echo cmp input.sc output.sc j]& tee —a a.sc

cmp input.sc output.sc |& tee —a a.sc <
echo 1s -lad *.sc |& tee —a a.sc

1ls -lad *.sc |& tee —a a.sc

which produces the following output

nice -20 ./callpdd
—————————— Last 10 output lines
Packet Type, # decompressed packets= 3 512

Packets 2049~ 2560 bytes 32769- 40960
Packet Type, # decompressed packets= 3 281
Packets 2561- 2841 bytes 40961- 45456
==End of File==
== (0 Warnings 0 Errors==

Note: this program was linked with -fast or -fnonstd

and so may have produced nonstandard floating-point results.
Sun’s implementation of IEEE arithmetic is discussed in

the Numerical Computation Guide.
—————————————————— Doing Compare-———=———=—————-—--
cmp input.sc output.sc
1s -lad *.sc

-rw-r—-r—— 1 grunes 2124 Sep 19 15:12 a.sc
-rw-r—--r-— 1 grunes 890 Sep 19 15:12 b.sc
-rw-r-——r—-— 1 grunes 12849 Sep 19 15:11 comp.sc
-rw-r--r--— 1 grunes 45456 Sep 19 15:10 input.sc
-rw-r——r-- 1 grunes 45456 Sep 19 15:12 output.sc

The fact that no error message appears after the

cmp input.sc output.sc

command is a good sign. Rundisk.sh then runs BLOCKHA on the same data, and once again de-
compresses the result and runs a comparison, then deletes scratch files:

echo —-—————-— Try BLOCKHA--—=——=——- |& tee —a a.sc
echo nice -20 ./blockha |& tee —a a.sc
nice -20 ./blockha |& tee b.sc
echo -—-———————- Last 13 output lines-————————-- >> a.sc
tail -13 b.sc >> a.sc
echo nice -20 ./callpdd j& tee —a a.sc
nice -20 ./callpdd |& tee b.sc
echo -——=————- Last 10 output lines >> a.sc
tail -10 b.sc >> a.sc
echo --———=————=———=——— Doing Compare————=————=————--——--- |& tee —a a.sc
echo cmp input.sc output.sc |& tee —a a.sc
cmp input.sc output.sc & tee —a a.sc
echo 1ls -lad *.sc |& tee —a a.scC
1ls -lad *.sc |& tee —a a.sc
echo rm b.sc input.sc comp.sc output.sc |& tee —a a.scC
rm b.sc input.sc comp.sc output.sc j& tee —a a.sc

42

which produces the following output:

———————— Try BLOCKHA----—----
nice -20 ./blockha

1 11 2.52 35968 ***** 35976 39342 35133 21355 21224 20269 20267
18326 18340 14286 14300 35992 35998 24455 24464 35234 33681
281 Input Packets Packet Type= 1 CF= 2.51683 rec= 2561
CF=orig_bits/compressed= 35968/ 14328= 2.51033 with overhead
Cumulative CF = 363648/ 148848= 2.44308
==End of File==
== {(Warnings 0 Errors==
Note: this program was linked with -fast or —fnonstd
and so may have produced nonstandard floating-point results.
Sun’s implementation of IEEE arithmetic is discussed in
the Numerical Computation Guide.
nice -20 ./callpdd
—————————— Last 10 output lines
Packet Type,# decompressed packets= 1 512
Packets 2049- 2560 bytes 32769- 40960
Packet Type, # decompressed packets= 1 281
Packets 2561- 2841 bytes 40961- 45456
==End of File==
== (0 Warnings 0 Errors==
Note: this program was linked with -fast or -fnonstd
and so may have produced nonstandard floating-point results.
Sun’s implementation of IEEE arithmetic is discussed in
the Numerical Computation Guide.
—————————————————— Doing Compare--————=-——-—=-—"-=""
cmp input.sc output.sc
1s -lad *.sc
-rw-r—-r—— 1 grunes 3726 Sep 19 15:13 a.sc
-rw-r--r—-—- 1 grunes 890 Sep 19 15:13 b.sc
-rw-r--r-- 1 grunes 18606 Sep 19 15:13 comp.scC
-rw-r-—-r—— 1 grunes 45456 Sep 19 15:10 input.scC
-rw-r—--r—— 1 grunes 45456 Sep 19 15:13 output.sc
rm b.sc input.sc comp.sc output.sc
Rundisk.sh then runs Unix compress on the entire test data set:
echo ——————=——=- Long Run--———==—=——=—————== |& tee -a a
echo ./mitchcopy Tape input.sc v=0 |& tee —a a
./mitchcopy Tape input.sc v=0 & tee -a a
echo ———=——=———— e —— e ————————— oo s ———sSoomom e |& tee —-a a
echo —-——=———- Try Unix Compress————————= & tee —a a
echo 1ls -lad input.sc |& tee -a a
1s -lad input.sc & tee —a a
echo nice -20 compress —f input.sc |& tee —a a
nice -20 compress -f input.sc |& tee -a a
echo 1ls -lad input.sc.2 |& tee —a a
1ls -lad input.sc.Z |& tee -a a
echo nice -20 uncompress input.sc |]& tee —-a a
nice -20 uncompress input.sc |& tee —-a a

which produces the following output:

./mitchcopy Tape input.sc v=0
src=Tape dest=input.sc m=none b=65535 s=0 v=0

43

.SC
.8C
.SC

.SC
.8C

.sc
.sC
.s¢C
.sC
.sC
.sC
.sC
.sC

rec 1 Input bytes=45456 Output bytes=45456 Errors= 0

———————— Try Unix Compress—-—-—————-—-

1s -lad input.sc

-rw-r--r-— 1 grunes 45456 Sep 19 15:13 input.sc

nice -20 compress —-f input.sc 5
ls -lad input.sc.Z

-rw-r—-—-r-— 1 grunes 26518 Sep 19 15:13 input.sc.Z

nice -20 uncompress input.sc

Rundisk.sh then runs the compression software. This time it includes the first 800 lines of output:

echp ————=m——=— e — oo |& tee —a a.scC
echo ———————- Try NRLPDC with all methods-—--—-—-—- |& tee —a a.scC
echo nice -20 ./callpdc j& tee —a a.sc
nice -20 ./callpdc |& tee b.sc
echo ———~——-——- First 800 output lines-—-—-—-—-—-—-- >> a.sc
head -800 b.sc >> a.scC
echo "-————————- Last 13 output lines, if any" >> a.sc
tail +800 b.sc |& tail -13 >> a.sc

———————— Try NRLPDC with all methods---————--
nice -20 ./callpdc
—————————— First 800 output lines---————--—-
—————————— CallpDC Rev 0.36 9/14/95-————————=

————————————————— Bits For Each Method-——=-——=——=——=—==-

0 1 2 3 4 5 6 7 8
Fld Best Orig Const Const RLE RiceG LZ77G LZ77G LZRW3 LZRW3
Meth CF BitRm +Diff +Diff A +Diff

) 10 11 12 13 14 15 16 17 20

1L.Z78G HA HA Radix Radix Arith Arith Rice RiceG
+Diff +Diff +Diff +Diff +Arit +RLE
1 1 512.00 1024 2 *rkkhkk Fhkhkdkdk kkkkKk d ¥k Kk Kk k % % % * % *hkhkkk FxkihkK

kdhkhkhkk Kkhkhhk Khkhkdkk KAk hkk khkkkk Fhkhkkk khkkhx *khkhkhkhk Fhkhkhkk Kkhkhkdkdk
l 512.00 512 l khkhdkhk *hkhkkdk Kkdkhkk Fhhkkk Fhkrkkd *hkkdkk hhkkkk
khkdkhkhk dhkkhkk Fhkhkkk Kxkkhkk Fhhkkk kdkhkhkh Hhhkhkk Fhkkdkhk *kkik * 4k * ok

w V]
-t
w
\N]
[~
Vo]
N
o
=Y
(o]
*
*
*
*
*
=
o
w
o
=
(00
jte)
w

: 883 1202 1211 **rxE kkkkk
1140 1143 *hkddkk kkhkk 822 832 846 856 864 955

4 l 512 00 4608 9 Ahkhkhkhk *hkhkhkhk Fhhkhkk Fhhht J % Kk k ok *kkdkk Kk kKhkkk
khkdkkx hkhkkdk Fhkhkdkk Fhkkkk Khkkhok dhkkdkhk F*hkhkxkk Hhkkkk Kkhkhkkx dhkhkkhkk

5 1 512.00 5120 10 Ak hkhk Ihkdkkk Fhkhkhkk Fhkkhkk Fhkhkkk Ak hkdkk FhkkdKk
Khkkhkhk hhkkhkk Fhkhkokk dhkkhkk Fohkhkk *hkAkhk Fhkkhkk Khhkkkdk Fhkkkk hkokhkk

6 1 512 00 8192 16 dhkhkkhk khkhkkk khkkkk Khkk ki *hkdkhkhk Fhkhkhkk Khkk kK
dhkhkkd dkhkkhkk hokk Ak khkhkkhk Fhkhkhkhk hhkhkhkx *kkKk * ok k kK dhkhhkhk Khhkkk*h

7 16 9.48 8192 ***** 5142 3330 895 3531 1282 7632 2112
5650 1098 2817 1009 4271 1611 4928 864 872 924

8 1 512.00 1536 3 khkhkhkk Khkdkhkk hkkhkk dkkkk Ahkhkhkk khkhkhkkx Kkkkhkk

X khkdhk Khk*kk Khkhkkk dkhkkkk Fhkhkkk Fkhkkk dhkdkhkk Fkkkhr Fhkhkkk *hkkk
9 l 512_00 1536 3 dhddkkr Khkhkhkdk hhkkhkk dhhkkkk Fhkhkkk Kkkhk * Kk kK
kkdkkk Fhkhkhk *hkkkkx Kdhkkxk *khkkk dhkkkk *hkrhkk F*hkrkhkk Fhhkkkx *hkdkkKh

lo l 512.00 1536 3 dhkhkhkk Fhkhkhkk Hhkrkhkk Fhkkhkk kkdkkk kkkkk * Kk k k% ~
Shkdkhkhk Fhkhkkk dkhkhkhkk Kkkkhkhk kohkkhkk kkkkk hkhkhx hhkkk Fhhkkk Ahkkkhk
11 1 512_00 1024 2 *hkhkrhk Hhkhkhkk dhhkhkkk FIhkhkk Khkkkk Fhkhkxk * % kK
Ahkhkkk Khkhkhkk Fhkhkkk Kdhkhkkk *hkkkk hxkxk *hkhkhkx Hhkkxkhk Fhkhkkk FThkhhk

12 4 1.26 5632 ***** 5643 6359 4484 5093 5672 7125 8108
5244 6631 4582 5493 4910 4970 ***** 4930 4582 4570

13 l 512.00 1024 2 ¥kkkk FhkdkEkkx FhkhkhAkx *E kXX khkkkk Fhkkkk FrkhkKk
dodkkdhk hokkdkk hokdkkh hokdkkk khkkhk dhkkdkhk Fhhhkk kkhhkk kkhhkok * %k ok k

14 15 1.76 3072 ***** 2056 3078 1911 2676 2680 *rxkk Hkkkk
2365 2370 1993 1999 1913 1923 1744 1751 1877 2037
15 1 512.00 1536 T AAEEE KAEHE KEEAK KFAKK KAKAK K AA XX *okdew K
rnhd Ahkkk hkhkkk kkkkk khkkkk kkkkFk kkkkk Kkkkk kkkkk kadkhx
16 15 1.26 2560 ***** 2565 3529 2237 3096 3121 4070 4084
2749 2753 2223 2237 2504 2521 2034 2055 2244 2405
17 1 512.00 1024 D KAFAE KkKKK KKEIK KKK KXAKK kkkwk Kakhk
R kA Hkkkk AkkkA kkkkk kkkkk kkkkk Khkkk kkkkdk kkkkk Kkhkk
18 11 2.72 7168 ***** 3605 4275 2975 3312 3322 FEEKA kkkkk
3161 3181 2639 2651 3132 3146 2703 2717 3035 3051
19 2 1.23 8192 ***** 6675 7191 6771 7194 7263 Fxckkk Akdokd

10469 10335 7686 7690 6701 6772 ***** xxxxx 6837 6802
PIDs=512*23

512 Input Packets Packet Type= 3 CF= 3.37588 rec= 1
CF=orig bits/compressed= 65536/ 19448= 3.36981 with overhead
Cumulative CF = 65536/ 19448= 3.36981

The column labeled "Fld #" shows the field #. In this packet format (3) there are 19 fields. "Best Meth"
contains the method number which performed best on that block of 512 packets for that field. "CF"
indicates the compression factor for that field, but does not include all applicable forms of overhead. The
remaining columns show the number of bits that each method required to represent the sequence. Note
that there were 19 methods listed (including Method 0 = no compression), and the fact that there is no
method 18 or 19. In addition method 17 (Rice-like adaptivity with arithmetic coding) is listed, but is
never used, because the de-compression component of the software has not yet been written for method
17. (In some instances a warning would be given relating to method 17. This warning would list the
value of "MinBits", which is the best possible value excluding method 17, and iiTry17, which is the value
for method 17. This warning is of no importance, but only indicates that method 17 would sometimes
have improved matters.) These fields take two lines to print.

\
Some of the columns contain "*****" This is because of one of the following reasons:

1. The field is constant. In this event method 1 (Constant Coding) always performs best, so it would
be a waste of time to look at the other methods.

2. One of the methods, as currently written, would not work. This might be because the software has
a limit on the bit field width, or because the method outputs more bits than the original data stream
for this block. Method 1 (constant coding) only works when the field is constant.

In the above example, method 1 (Constant Coding) performed best on field 1. Ignoring overhead, method
0 (the original data stream for field 1) required 1024 bits (2 bits/packet), but constant coding only required
2. This gives a compression factor of 1024 /2 = 512.00.

Similarly, method 13 (Radix Coding) performed best on field 3. Ignoring overhead, Method 0 reqﬁired
2048 bits (4 bits/packet), but method 13 only required 822. This gives a compression factor of 2048 /
822 = 2.49.

After the table one sees

PIDs=512*23
512 Input Packets Packet Type= 3 CF= 3.37588 rec= 1

45

which indicates that there were 512 packets with packet ID value 23, that were grouped together as packet
type 3. The compression factor for that packet type within the first block was 3.37588. The block of
packets started at record 1.

That compression factor does not include the overhead for the output compressed packet, or for the
specification of packet types. Therefore one also sees

CF=orig bits/compressed= 65536/ 19448= 3.36981 with overhead g

Finally one sees the cumulative CF for blocks of packets up to this point:

Cumulative CF = 65536/ 19448= 3.36981

This is a simple example. It is possible for a block of packets to contain packets of several types. In that
case one would see the tables for each type, but the last two lines only after the last type.

The output continues for additional blocks of packets, ending with:

18 1 281.00 3934 14 Hkxrk kkkkk KKK FE KXKFK KA KF K KELAK kkkkx
akkkk kkkh Kk hhkkkk khkkkk Kkkhkk kkkkk kkKkkk Khhkkk kkkkk Kk k¥
19 2 1.22 4496 ***** 3672 3957 3775 3960 4043 ***** FRA KK
5620 5683 *x**% **xxx 3698 377G **kxkx *xxxx 3TT] 3797

PIDs=281*23

281 Input Packets Packet Type= 3 CF= 4.03636 rec= 2561
CF=orig bits/compressed= 35968/ 8944= 4.02147 with overhead
Cumulative CF = 363648/ 102792= 3.53771
==End of File==
== (0 Warnings 0 Errors==

Note: this program was linked with -fast or -fnonstd

and so may have produced nonstandard floating-point results.
Sun’s implementation of IEEE arithmetic is discussed in

the Numerical Computation Guide.

for the last block. The final cumulative compression factor was 3.53771, or about 3.54.

Rundisk.sh then lists all of the PID lines, compression factors, errors and warnings:

echo —-—————————= PIDs————————~-— >> a.sc
grep -i pid b.sc >> a.sc
echo -—-———=-—- Packet Compression factors-—---—---——- >> a.sc
grep "CF=" b.sc >> a.sc
echo -—————-—- Errors and Warnings—--————-———-- >> a.sc
grep "==" b.sc >> a.sc
which produces the following output:
—————————— PIDS——==——==——
PIDs=512*23
PIDs=512*23
PIDs=512*23
PIDs=512*23
PIDs=512*23
PIDs=281*23
—————————— Packet Compression factors—-—--—-——-- .
512 Input Packets Packet Type= 3 CF= 3.37588 rec= 1
CF=orig bits/compressed= 65536/ 19448= 3.36981 with overhead
512 Input Packets Packet Type= 3 CF= 3.37640 rec= 513 .
CF=orig bits/compressed= 65536/ 19448= 3.36981 with overhead
512 Input Packets Packet Type= 3 CF= 3.45782 rec= 1025

46

CF=orig bits/compressed= 65536/ 18992= 3.45072 with overhead

512 Input Packets Packet Type= 3 CF= 3.47930 rec= 1537
CF=orig bits/compressed= 65536/ 18872= 3.47266 with overhead
512 Input Packets Packet Type= 3 CF= 3.84330 rec= 2049
CF=orig_bits/compressed= 65536/ 17088= 3.83521 with overhead
281 Input Packets Packet Type= 3 CF= 4.03636 rec= 2561
CF=orig bits/compressed= 35968/ 8944= 4.02147 with overhead

—————————— Errors and Warnings——-—---——--
End of File==
0 Warnings 0 Errors==

Rundisk.sh once again de-compresses the result and compares the de-compressed data set to the original:

echo nice -20 ./callpdd |& tee —a a.sc
nice -20 ./callpdd |& tee b.sc
echo ————-—————- Last 10 output lines >> a.sc
tail -10 b.sc >> a.sc
echo —————————=———————= Doing Compare-—-—————=———————==—- |]& tee -a a.scC
echo cmp input.sc output.sc |& tee —a a.scC
cmp input.sc output.sc |& tee —a a.sc
echo 1ls —-lad *.sc |& tee —a a.sc
1ls -lad *.sc |& tee -a a.sc

producing the following output:

nice -20 ./callpdd
—————————— Last 10 output lines
Packet Type,# decompressed packets= 3 512

Packets 2049~ 2560 bytes 32769~ 40960
Packet Type,# decompressed packets= 3 281
Packets 2561- 2841 bytes 40961- 45456
==End of File==

== (0 Warnings 0 Errors==

Note: this program was linked with -fast or -fnonstd

and so may have produced nonstandard floating-point results.
Sun’s implementation of IEEE arithmetic is discussed in

the Numerical Computation Guide.

-—— -Doing Compare ———=

cmp input.sc output.sc

1s -lad *.sc

-rw-r--r-- 1 grunes 28215 Sep 19 15:14 a.sc
-rw-r——-r-- 1 grunes 890 Sep 19 15:14 b.sc
-rw-r-—-r—— 1 grunes 12849 Sep 19 15:14 comp.sc
-rw-r——r—— 1 grunes 45456 Sep 19 15:13 input.sc
-rw-r—--r-— 1 grunes 45456 Sep 19 15:14 output.sc

Once again BLOCKHA is used in a similar fashion:

echo —~———————————>———- - |& tee —-a a.sc
echo ———————- Try BLOCKHA--——————= |& tee -a a.sc
echo nice -20 ./blockha |& tee -a a.sc
nice -20 ./blockha |& tee b.sc
echo --——————- Last 13 output lines———--——-- >> a.sc
tail -13 b.sc >> a.sc
echo --———=-——>- Packet Compression factors—---—----——- >> a.sc
grep "CF=" b.sc >> a.sc
echo nice -20 ./callpdd |& tee —a a.sc
nice -20 ./callpdd |& tee b.sc
echo —————=———~ Last 10 output lines >> a.sc
tail -10 b.sc >> a.sc

47

echo -——————-———=—=———~ Doing Compare-—-——-—————=——~—"=--— |& tee -a a.sc
echo cmp input.sc output.sc |& tee —a a.sc
cmp input.sc output.sc |& tee —-a a.sc
echo 1ls -lad *.sc , |& tee —a a.sc
1ls -lad *.sc |& tee —a a.sc

We omit the output for brevity. Rundisk.sh ends with deletion of scratch files, and a listing of date and
time:

echo rm b.sc input.sc comp.sc output.sc & tee -a a.sc
rm b.sc input.sc comp.sc output.sc |& tee -a a.sc
echo date |& tee —a a.sc
date |& tee —a a.sc

which produces the following output:

rm b.sc input.sc comp.sc output.sc
date
Tue Sep 19 15:16:32 EDT 1995

A8. Configuration Control

If development of an operational version becomes desirable, a formal system will have to exist for
processing Engineering Change Proposals, and for other modifications. Administrative responsibility
should rest with

Junho Choi
Code 8140.2
Naval Research Laboratory
Washington DC, 20375
Phone 202-767-9050 (may change), 202-767-9792
FAX 202-767-1317
A9. Configuration Status Accounting

At the current time no plans have been made for configuration status accounting, due to the lack of a
formal requirement or budget for configuration management on this task.

A10. Configuration Audits

At the current time no plans have been made for configuration audits, due to the lack of a formal
requirement or budget for configuration management on this task.

All. Subcontractor/Vendor Control

At the current time no subcontractors or vendors are involved. However, if the need for such becomes
apparent, an appropriate CM plan will be developed, tailored from the directives in [6].

48

